Когда Эйген и его коллеги в 60-е годы изучали каталитические реакции с участием ферментов, они заметили, что в далеких от равновесия биохимических системах, т. е. системах, пронизанных энергетическими потоками, различные каталитические реакции объединяются, формируя сложные сети, в которых могут содержаться и замкнутые циклы. На рис. 5-3 приведен пример такой каталитической сети, когда 15 ферментов ускоряют формирование друг друга таким образом, что образуется замкнутый, или каталитический, цикл. Эти каталитические циклы лежат в основе самоорганизующихся химических систем, подобных химическим часам, исследованным Пригожиным; кроме того, они играют существенную роль в метаболических функциях живых организмов. Они замечательным образом устойчивы и выдерживают широкий диапазон условий38. Эйген установил, что в условиях достаточного времени и непрерывного потока энергии каталитические циклы обнаруживают тенденцию к сцеплению, формируя замкнутые петли, в которых ферменты, созданные в одном цикле, служат катализаторами в последующем цикле. Он ввел термин «гиперциклы» для тех петель, в которых каждый узел представляет собой каталитический цикл. Оказывается, что гиперциклы проявляют не только замечательную устойчивость, но также и способность к самовоспроизведению и коррекции ошибок при воспроизведении. А это означает, что они могут хранить и передавать сложную информацию. Теория Эйгена показывает, что такое самовоспроизведение — конечно, хорошо известное в мире живых организмов — могло происходить в химических системах задолго до появления жизни, до образования генетической структуры. Химические гиперциклы, таким образом, являются самоорганизующимися системами, которые, строго говоря, нельзя назвать «живыми», поскольку у них отсутствуют некоторые ключевые характеристики жизни. Тем не менее их можно рассматривать в качестве прототипов живых систем. Урок, который можно извлечь из этого, по-видимому, заключается в том, что корни жизни берут начало в мире неживой материи. Одно из наиболее поразительных «жизнеподобных» свойств гиперциклов состоит в том, что они могут развиваться, проходя через периоды неустойчивости и последовательно создавая все более высокие уровни организации, которые характеризуются нарастающим разнообразием и богатством компонентов и структур38. Рис. 5-3. Каталитическая сеть ферментов, включающая замкнутый цикл (Е1 — Е15). Из Eigen (1971) Эйген отмечает, что новые гиперциклы, сформированные подобным образом, вполне могут составить конкуренцию естественному отбору, и, описывая весь процесс, он явным образом ссылается на теорию Пригожина: «Возникновение мутаций с преимуществами отбора соответствует определенной неустойчивости, которую можно объяснить с помощью теории... Пригожина и Глансдорфа»39. — 65 —
|