Паутина жизни

Страница: 1 ... 180181182183184185186187188189190 ... 224

Начиная с 40-х годов вся нейробиология формировалась под воздействием идеи, представляющей мозг в виде устройства для обработки информации. Например, когда исследования зрительной области коры мозга показали, что определенные нейроны реагируют на определенные особенности воспринимаемых объектов — скорость, цвет, контраст и т. д., — сразу возникло представление о том, что эти специализированные нейроны считывают зрительную информацию с сетчатки и передают ее в другие области мозга для дальнейшей обработки. Однако последующие исследования на животных показали, что связывать нейроны с соответствующими характеристиками объектов можно только тогда, когда животное находится под глубоким наркозом и осуществляется строгий контроль над внутренней и внешней средой. Когда животное наблюдают в бодрствующем состоянии и в более привычных для него внешних условиях, его нейронные реакции оказываются более чувствительными ко всему контексту визуального возбудителя и уже не могут быть истолкованы в терминах последовательной обработки информации7.

В 70-е годы, когда появилась концепция самоорганизации, компьютерная модель обучения была наконец подвергнута серьезному сомнению. Необходимость свежего критического взгляда на эту доминирующую гипотезу была обусловлена двумя хорошо известными недостатками компьютерного «видения». Первый: обработка информации основана на ряде последовательных правил, применяемых по очереди; | второй: эта обработка локализована таким образом, что повреждение [любой части системы приводит к серьезным нарушениям ее работы в | целом. Обе эти особенности входят в поразительное противоречие с биологическими наблюдениями. Самые обычные визуальные задачи даже крохотными насекомыми решаются быстрее, чем это физически возможно при последовательной обработке; а способность поврежденного мозга к восстановлению и сохранению функционирования в целом хорошо известна всем.

Эти наблюдения побуждали к сдвигу фокуса — от символов к связности, от локальных правил к глобальной согласованности, от обычной обработки информации к неожиданным возможностям нейронных сетей. С учетом современного развития нелинейной математики и моделей самоорганизующихся систем, такое смещение внимания обещало новые и интеллектуально волнующие направления исследований. Действительно, в начале 80-х годов модели «связных» нейронных сетей приобрели большую популярность8. Эти модели тесно взаимосвязанных элементов предназначены для одновременного выполнения миллионов операций и проявляют интересные глобальные — внезапно возникающие — свойства. Как поясняет Франциско Варела, «Мозг — это... высоко согласованная система: плотные взаимодействия между его компонентами приводят к тому, что в конечном счете все, что происходит, оказывается функцией того, что делают все компоненты... В результате вся система приобретает внутреннюю согласованность в своих паттернах, хотя мы не можем точно сказать, как это происходит»9.

— 185 —
Страница: 1 ... 180181182183184185186187188189190 ... 224