Найти теорию струн, соответствующую реальному миру, представляет собой чрезвычайно сложную задачу. Нам нужно еще узнать, почему гравитация, частицы и взаимодействия, выведенные из теории струн, должны совпадать с теми, которые существуют в нашем мире. Но эти проблемы с частицами, взаимодействиями и размерностями бледнеют по сравнению с реальным слоном в лавке — огромной переоценкой плотности энергии во Вселенной. Даже в отсутствие частиц, Вселенная может обладать энергией, известной как энергия вакуума. Согласно общей теории относительности, существование такой энергии приводит к физическому следствию: она расширяет или сжимает пространство. Положительная вакуумная энергия ускоряет расширение Вселенной, в то время как отрицательная вакуумная энергия заставляет ее сжиматься. Эйнштейн впервые предположил существование такой энергии в 1917 году с целью найти статическое решение своих уравнений общей теории относительности, в котором гравитационный эффект энергии вакуума компенсировал бы влияние материи. Хотя затем он по многим причинам отверг эту идею, в том числе из-за открытого в 1929 году Эдвином Хабблом расширения Вселенной, не существует теоретической причины, по которой такая вакуумная энергия не могла бы существовать в нашей Вселенной. Действительно, недавно астрономы измерили вакуумную энергию в нашем Космосе (ее еще называют темной энергией или космологической постоянной) и получили некоторое малое положительное значение. Они увидели, что далекие сверхновые тусклее, чем можно было бы ожидать, если бы они не разлетались ускоренно. Измерения сверхновых и детальные наблюдения реликтовых фотонов, рожденных во время Большого взрыва, убеждают нас, что Вселенная расширяется с ускорением, а это есть свидетельство того, что вакуумная энергия имеет малое положительное значение. Это открытие очень важное. Но оно же порождает серьезную проблему. Ускорение очень мало, что говорит нам о том, что значение энергии вакуума хотя и ненулевое, но очень крохотное. Теоретическая проблема с наблюдаемой энергией вакуума состоит в том, что она намного меньше, чем кто-либо может оценить. Согласно оценкам теории струн эта энергия должна была бы быть намного больше. Но если бы это было так, энергия вакуума не просто приводила бы к трудноуловимому ускорению сверхновых. Если бы вакуумная энергия была большой, Вселенная уже давно бы сжалась (при отрицательной вакуумной энергии), или быстро расширилась в никуда (при положительной вакуумной энергии). Теория струн должна еще объяснить, почему вакуумная энергия Вселенной столь мала. Физика частиц также не знает ответа на этот вопрос. Однако, в противоположность теории струн, физика частиц не претендует на то, чтобы быть теорией квантовой гравитации, она менее амбициозна. Модель физики частиц, которая неспособна объяснить энергию вакуума, неудовлетворительна, но теория струн, дающая неправильное значение этой энергии, вообще исключена. — 228 —
|