Закрученные пассажи

Страница: 1 ... 216217218219220221222223224225226 ... 374

Аномалии очень важны для теории взаимодействий. В гл. 9 мы видели, что успешная теория взаимодействий требует существования внутренней симметрии. Эта симметрия должна быть точной, в противном случае невозможно исключить нежелательные поляризации калибровочного бозона, и теория взаимодействий не будет иметь смысла. Поэтому симметрия, связанная с взаимодействием, должна быть свободна от аномалий : сумма всех нарушающих симметрию эффектов должна равняться нулю.

Это мощное ограничение на любую квантовую теорию взаимодействий. Например, мы знаем сейчас, что это есть одно из самых убедительных объяснений существования в Стандартной модели и кварков, и лептонов. По отдельности виртуальные кварки и лептоны приводят к аномальным квантовым вкладам, которые нарушают симметрии Стандартной модели. Однако сумма квантовых вкладов от кварков и от лептонов равна нулю. Это чудодейственное сокращение и есть то, что скрепляет конструкцию Стандартной модели, — и кварки, и лептоны необходимы для того, чтобы взаимодействия в Стандартной модели обрели смысл.

Аномалии могли стать проблемой для теории струн, которая, помимо прочего, включает и взаимодействия. В 1983 году, когда теоретики Луис Альварес-Гауме и Эдвард Виттен показали, что такие аномалии возникают не только в квантовой теории поля, но и в теории струн, казалось, что это открытие отправит теорию струн в архив интересных в далекой перспективе, но пока неактуальных идей. Казалось, что теория струн не может сохранять требуемые симметрии. В атмосфере скептицизма, порожденного возможным существованием аномалий в теории струн, Грин и Шварц совершили сенсационное открытие, показав, что теория струн может удовлетворить ограничениям, которые нужны для того, чтобы избежать аномалий. Они вычислили квантовый вклад во все возможные аномалии и показали, что для определенных взаимодействий аномалии чудесным образом дают в сумме нуль.

Одна из причин, по которой результат Грина и Шварца был таким удивительным, состояла в том, что теория струн допускает много неприятных квантовомеханических процессов, каждый из которых мог бы породить нарушающие симметрию аномалии. Но Грин и Шварц показали, что сумма квантово-механических вкладов во все возможные нарушающие симметрию аномалии в десятимерной теории суперструн равна нулю. Это означало, что многие сокращения, требуемые в вычислениях теории струн, действительно происходят, более того, эти сокращения происходят в десяти измерениях, т. е. в том самом числе измерений, которое, как уже известно, является особым для теории суперструн. Сокращение аномалий было мощным аргументом в пользу десятимерной суперструны.

— 221 —
Страница: 1 ... 216217218219220221222223224225226 ... 374