Закрученные пассажи

Страница: 1 ... 202203204205206207208209210211212 ... 374

Когда я впервые узнала о суперсимметрии, она показалась мне слишком простой с точки зрения построения моделей. Дело выглядело так, как будто суперсимметричные теории могли содержать случайные несвязанные массы, так как квантовые вклады отсутствовали. И хотя мы не знали, почему должны появляться неравноправные массы, они не причиняли никаких неприятностей. Это было очень досадно с точки зрения построения моделей, так как ничто не давало никакого ключа к до сих пор не определенной базисной теории. Кроме того, это было немного скучно, так как казалось, что моделирование не является слишком сложной задачей.

Но затем я узнала о проблеме аромата в суперсимметричных теориях, из которой следует, что не все так просто; на самом деле очень трудно установить конкретные детали теории при наличии нарушенной суперсимметрии. Проблема является довольно тонкой, но тем не менее она важна. Проблема аромата есть главное препятствие к построению простой теории нарушения суперсимметрии. Все новые теории нарушения суперсимметрии концентрируются на этой проблеме, и в гл. 17 будет показано, почему возможным решением является нарушение суперсимметрии в дополнительных измерениях.

Напомним, что ароматы фермионов Стандартной модели — это три различных фермиона трех разных поколений, имеющих одинаковые заряды, но разные массы, например, кварки и, c иt, или электрон, мюон и тау. В Стандартной модели ароматы лептонов не меняются. Например, мюоны никогда непосредственно не взаимодействуют с электронами, они взаимодействуют только косвенно, через обмен слабым калибровочным бозоном. Хотя мюоны могут распадаться в электроны, это происходит только потому, что среди продуктов распада имеются также мюонное нейтрино и электронное антинейтрино (см. рис. 53 на стр. 151). Мюон никогда не превращается непосредственно в электрон без испускания соответствующих нейтрино.

Способ, которым физики фиксируют эту индивидуальность конкретного типа лептонов, состоит в том, чтобы потребовать сохранения электронного или мюонного числа. Мы приписываем положительное электронное число электрону и электронному нейтрино, и отрицательное электронное число — позитрону и антинейтрино. Аналогично, мы приписываем положительное мюонное число мюону и мюонному нейтрино, и отрицательное мюонное число — антимюону и мюонному антинейтрино. Если мюонное и электронное числа сохраняются, мюон никогда не сможет распасться на электрон и фотон, так как в начале у нас есть положительное мюонное число и нулевое электронное число, а в конце — нулевое мюонное число и положительное электронное число. Действительно, никто никогда не наблюдал подобного распада. Насколько мы знаем, электронное и мюонное числа сохраняются всеми взаимодействиями частиц.

— 207 —
Страница: 1 ... 202203204205206207208209210211212 ... 374