Как показывают вычисления, если сложить все вклады от всех возможных путей, то вакуум ослабляет тот сигнал, который фотон переносит от электрона. Интуитивное объяснение ослабления электромагнитного взаимодействия состоит в том, что заряды противоположного знака притягиваются, а заряды одного знака отталкиваются, поэтому в среднем виртуальные позитроны находятся ближе к электрону, чем виртуальные электроны. Поэтому заряды от виртуальных частиц ослабляют полное воздействие исходной электрической силы, создаваемой электроном. Квантово-механические эффекты экранируют электрический заряд. Экранировка электрического заряда означает, что интенсивность взаимодействия между фотоном и электроном уменьшается с расстоянием. Реальная электрическая сила на больших расстояниях оказывается меньше, чем классическая электрическая сила на малых расстояниях, так как фотон, переносящий взаимодействие на короткие расстояния, чаще выбирает путь, не содержащий виртуальных частиц. Фотону, путешествующему на малое расстояние, не требуется проходить сквозь большое ослабевающее облако виртуальных частиц, как это приходится делать фотону, переносящему взаимодействие на большие расстояния. Не только фотон, но и все переносящие взаимодействие калибровочные бозоны взаимодействуют по дороге к месту назначения с виртуальными частицами. Пары виртуальных частиц — частица и ее античастица — спонтанно извергаются из вакуума и поглощаются им, что влияет на конечную интенсивность взаимодействия. Эти виртуальные частицы на время устраивают засаду на переносящий взаимодействие калибровочный бозон, изменяя суммарную интенсивность взаимодействия. Вычисления показывают, что, как и в случае электромагнитного взаимодействия, интенсивность слабого взаимодействия уменьшается с расстоянием. Однако виртуальные частицы не всегда навешивают тормоза на взаимодействия. Как это ни удивительно, иногда они могут помочь усилить их. В начале 1970-х годов Дэвид Политцер, который был тогда аспирантом Сидни Коулмена в Гарварде (который и предложил Политцеру задачу), и независимо Дэвид Гросс и его студент Фрэнк Вильчек (оба из Принстона), и, наконец, Герард ’т Хоофт из Голландии проделали вычисления, показавшие, что сильное взаимодействие ведет себя полностью противоположным образом по сравнению с электромагнитным взаимодействием. Вместо экранирования сильного взаимодействия на больших расстояниях и тем самым его ослабления, виртуальные частицы на самом деле усиливают взаимодействия глюонов (частиц, переносящих сильное взаимодействие), так что сильное взаимодействие на больших расстояниях оправдывает свое название. Гросс, Политцер и Вильчек получили Нобелевскую премию по физике 2004 года за глубокое проникновение в суть сильного взаимодействия. — 176 —
|