Однако даже в то время было ясно, что теория Ферми не может быть правильной теорией, применимой при всех энергиях. Хотя при низких энергиях ее предсказания были правильными, при высоких энергиях они становились полностью неверными, приводя к слишком сильным взаимодействиям. Если предположить (что неверно), что теория Ферми применима к частицам большой энергии, то мы придем к бессмысленным предсказаниям вроде того, что частицы должны взаимодействовать с вероятностью больше единицы. Это невозможно, так как ничто не может случаться чаще, чем всегда. Хотя теория, основанная на взаимодействии Ферми, была прекрасной эффективной теорией для объяснения взаимодействий при низких энергиях и между достаточно удаленными частицами, физики видели, что им нужно более фундаментальное объяснение процессов типа бета-распада, если они хотят знать, что происходит при высоких энергиях. Казалось, что теория, основанная на передаче взаимодействий слабыми калибровочными бозонами, должна намного лучше работать при высоких энергиях, однако никто не знал, как учесть короткодействующий характер слабого взаимодействия. Малый радиус оказался следствием ненулевых масс слабых калибровочных бозонов. В физике частиц связи, накладываемые соотношением неопределенностей и специальной теорией относительности, имеют заметные следствия. В конце гл. 6 я обсуждала вопрос о наименьших расстояниях, на которых частица данной энергии, например, характерной энергии слабого взаимодействия или планковской энергии, может быть подвержена действию сил. В силу соотношения специальной теории относительности между энергией и массой (E = mc2) массивным частицам, например слабым калибровочным бозонам, автоматически присущи аналогичные соотношения между массой и расстоянием. В частности, взаимодействие, осуществляемое путем обмена частицей некоторой массы, становится тем слабее на больших расстояниях, чем меньше масса. (Это расстояние пропорционально также постоянной Планка и обратно пропорционально скорости света[98].) Приведенная в гл. 6 связь между массой и расстоянием говорит нам, что слабый калибровочный бозон, масса которого примерно равна 100 ГэВ, автоматически передает слабое взаимодействие только частицам, находящимся на расстоянии 10-18 м. На больших расстояниях переносимое частицей взаимодействие становится необычайно малым, слишком малым для того, чтобы мы могли это когда-нибудь обнаружить. Ненулевая масса слабого калибровочного бозона представляется критической для успеха теории слабого взаимодействия. Масса есть причина того, что слабое взаимодействие действует только на очень коротких расстояниях, и настолько слабо, что кажется практически несуществующим на больших расстояниях. В этом отношении слабые калибровочные бозоны отличаются от фотона и гравитона, которые не имеют массы. Так как фотон и гравитон, частица, переносящая гравитационное взаимодействие, переносят энергию и импульс, но не имеют массы, они могут передавать взаимодействия на большие расстояния. — 129 —
|