Пример квазикристаллической картины показан на рис. 2. В ней нет точной регулярности, встречающейся в настоящем кристалле, картина которого выглядела бы скорее как сетка, нанесенная на лист миллиметровки. Наиболее изящный способ объяснения картин расположения молекул, возникающих в этих странных материалах, использует проекцию — нечто вроде трехмерной тени — кристаллической картины в пространстве с большим числом измерений, которая отражает симметрию картины в многомерном пространстве. В сковородах с антипригарным покрытием, на рабочую поверхность которых нанесены квазикристаллы, используется тот эффект, что проекция многомерных кристаллов на поверхности сковороды имеет структурные отличия от земной структуры обычной трехмерной пищи. Различные расположения атомов, не дающие им связаться друг с другом, являются дразнящим намеком на то, что дополнительные измерения существуют и объясняют ряд наблюдаемых физических явлений. ОбзорДополнительные измерения помогают понять необычное расположение молекул в квазикристалле; точно так же в наши дни физики предполагают, что теории с дополнительными измерениями смогут прояснить существующие в физике частиц и космологии связи, которые трудно понять, если ограничиться только тремя измерениями. В течение тридцати лет ученые опирались на теорию, называемую Стандартной моделью физики частиц, которая рассказывает о фундаментальной природе материи и тех силах, за счет которых взаимодействуют элементарные составляющие [3]. Физики проверили Стандартную модель, воссоздавая частицы, которые существовали в нашем мире только в самые первые секунды жизни Вселенной, и убедились, что Стандартная модель очень хорошо описывает многие их свойства. Однако ряд фундаментальных вопросов остается в рамках Стандартной модели без ответа, и эти вопросы настолько фундаментальны, что их решение обещает новое глубокое проникновение в свойства строительных блоков нашего мира и их взаимодействий. В этой книге рассказывается о том, как я и другие ученые искали ответы на загадки Стандартной модели и оказались в мирах с дополнительными измерениями. Новые достижения теории дополнительных измерений в конце концов займут в этом рассказе центральное место, но сначала я представлю вспомогательных игроков — революционные достижения физики двадцатого века. Недавние идеи, о которых я позднее расскажу, основаны на этих замечательных прорывах. Обзорные разделы, с которыми мы познакомимся, можно в общих чертах разделить на три категории: физика начала двадцатого века, физика частиц и теория струн. Мы обсудим ключевые идеи теории относительности и квантовой механики, а также современное состояние физики частиц и проблемы, которые могут быть связаны с дополнительными измерениями. Мы рассмотрим также понятия, лежащие в основе теории струн, которую многие физики считают главным претендентом на роль теории, объединяющей квантовую механику и тяготение. Теория струн, постулирующая, что самыми основными элементами в природе являются не частицы, а фундаментальные колеблющиеся струны, придала значительный импульс изучению дополнительных измерений, так как теория струн требует существования более чем трех пространственных измерений. Кроме того, я опишу роль бран — объектов в теории струн, похожих на мембраны, которые столь же существенны для теории, как сами струны. Мы рассмотрим как успехи этих теорий, так и те вопросы, которые они оставляют открытыми, оправдывая тем самым современные исследования. — 12 —
|