Кроме того, планковская энергия — наибольшая возможная энергия, для которой можно применять классическую теорию тяготения; выше этой энергии существенной становится квантовая теория гравитации, последовательно описывающая как квантовую механику, так и тяготение. Ниже, при обсуждении теории струн, мы увидим также, что в старых моделях теории струн натяжение струны скорее всего определяется планковской энергией. Квантовая механика и соотношение неопределенностей утверждают, что когда частицы достигают этой энергии, то с их помощью можно исследовать физические процессы, происходящие на расстояниях порядка планковской длины, равной 10-35 м. Это расстояние невероятно мало, много меньше расстояния, доступного измерению. Но для описания физических процессов, возникающих на столь малых расстояниях, требуется квантовая теория гравитации, и такой теорией может быть теория струн. По этой причине планковская длина, так же как и планковская энергия, являются важными масштабами, которые будут часто появляться в последующих главах. Бозоны и фермионыКвантовая механика указывает на важное различие между частицами, разделяя весь мир частиц на бозоны и фермионы. Эти частицы могут относиться к фундаментальным, например, электроны и кварки, или к составным, таким как протон или атомное ядро. Любой объект является либо бозоном, либо фермионом. Является ли такой объект бозоном или фермионом, зависит от свойства, называемого внутренним спином частицы. Название наводит на определенные образы[75], однако спин частиц не соответствует никакому реальному движению в пространстве. Однако если частица имеет внутренний спин, она взаимодействует с другими так, как будто на самом деле вращается, несмотря на то что на самом деле никакого вращения нет. Например, взаимодействие электрона с магнитным полем зависит от классического вращения электрона, его реального вращения в пространстве. Однако взаимодействие электрона с магнитным полем зависит также от внутреннего спина электрона. В противоположность классическому моменту импульса, возникающему из-за реального движения в физическом пространстве[76], внутренний спин является свойством частицы. Он фиксирован и обладает определенным значением сейчас и всегда. Например, фотон есть бозон со спином 1 (в единицах h). Это свойство фотона, оно столь же фундаментально, как тот факт, что фотон движется со скоростью света. В квантовой механике спин квантован. Квантовый спин может принимать значения 0 (т. е. полное отсутствие спина), 1, 2 или любое целое число единиц спина. Объекты, называемые бозонами по имени индийского физика Сатиендры Ната Бозе, имеют внутренний спин, т. е. квантово-механический спин, не зависящий от вращения, принимающий целые значения: бозоны могут иметь внутренний спин, равный 0, 1, 2 и т. д. — 112 —
|