Самосознающая вселенная. Как сознание создает материальный мир

Страница: 1 ... 6869707172737475767778 ... 255

Когда мы задумываемся об этом, становится ясно, что Бор заменял одну дихотомию другой — дихотомию кошки дихотомией мира, разделяемого на квантовые и классические системы. Согласно Бору, мы не можем отделять волновую функцию атома от всего остального в клетке (различных измерительных приборов для определения распада атома, вроде счетчика Гейгера, бутылки с ядом и даже кошки), и потому линия, которую мы проводим между микромиром и макромиром, оказывается совершенно произвольной. К сожалению, Бор также говорил о необходимости признавать, что измерение с помощью механизма — измерительного прибора — разрешает дихотомию квантовой волновой функции.

Однако любое макроскопическое тело, в конечном счете, представляет собой квантовый объект; не существует такой вещи, как классический объект, если только мы не готовы признавать порочную дихотомию квантового/классического в физике. Верно, что в большинстве ситуаций поведение макроскопического тела можно предсказывать, исходя из правил классической механики. (В таких случаях квантовая механика дает те же математические предсказания, что и классическая механика, — это принцип соответствия, который открыл сам Бор.) По этой причине мы часто приближенно считаем макроскопические тела классическими. Однако процесс измерения — не такой случай, и принцип соответствия к нему не применим. Разумеется, Бор это знал. В своих знаменитых дебатах с Эйнштейном Бор часто привлекал квантовую механику для описания макроскопических тел при измерении, чтобы опровергать острые возражения, выдвигавшиеся Эйнштейном против волн вероятности и принципа неопределенности.

В качестве примера спора между Бором и Эйнштейном рассмотрим ситуацию двухщелевого эксперимента, но с одним дополнительным аспектом. Предположим, что до попадания на двойную щель электроны проходят через одиночную щель в диафрагме — ее цель состоит в точном определении начального положения электронов. Эйнштейн предлагал устанавливать эту первую щель на крайне чувствительных пружинах (рис. 24). Он доказывал, что если первая щель отклоняет электрон к верхней из двух щелей, то в силу принципа сохранения импульса первая диафрагма будет отходить вниз, а если электрон отклоняется вниз, к нижней из щелей, то будет происходить противоположное. Таким образом, измерение отдачи диафрагмы будет говорить нам, через какую щель, в действительности, проходит электрон — то есть давать информацию, невозможную с точки зрения квантовой механики. Если бы первая диафрагма действительно была классической, то Эйнштейн был бы прав. Защищая квантовую механику, Бор указывал, что, в конечном счете, эта диафрагма тоже подчиняется квантовой неопределенности. Поэтому при измерении ее импульса становится неопределенным ее положение. Бор был способен продемонстрировать, что это расширение первой щели фактически уничтожает интерференционную картину.

— 73 —
Страница: 1 ... 6869707172737475767778 ... 255