Как отмечалось в главе 4, сжатие самых низких электроположительных элементов не принимает минимальных 1-1-1 коэффициентов их электроотрицательных дубликатов, но составляет а = 4 у всех элементов этого класса, исследованных Бриджменом. Причина такого различия в поведении еще неизвестна (хотя, бесспорно, связана с положительной природой смещения вращения этих элементов), но оно еще ярче выражено в температурных коэффициентах. За исключением щелочных металлов выше натрия, которые, как отмечалось выше, обладают температурными коэффициентами ниже величин сжимаемости, более низкие электроположительные элементы не только сохраняют минимум 6 единиц (4-1-1 или эквивалент), но и поднимают действующие величины температурных коэффициентов еще выше, опуская сегмент n = 1 кривой удельной теплоты, основанной на уравнении 5-6. Они сразу же переходят к n = 2, что увеличивает температурную шкалу на коэффициент 8. Соответствующие члены следующей более высокой группы, магний, алюминий и кремний, тоже имеют n = 2 с самого начала температурного движения, но здесь вторая единица одномерна, а не трехмерна. Бериллий объединяет два паттерна. Он обладает теми же температурными коэффициентами, что и литий, но множитель измерения составляет половину между множителями измерения лития и бора, двух соседних элементов. Вариант одного измерения или трех измерения открыт, если осуществляется движение от одной единицы к двум, но ни при каких других условиях. Трехмерное движение одной единицы смещения незначимо, поскольку 13 = 1. После двух единиц вариантов не существует, поскольку в линейной последовательности не может быть больше двух единиц, по причинам, которые обсуждались в томе 1. Но движение двух единиц может быть либо одномерным, либо трехмерным. В точке перехода от одной единицы к двум движение может принимать измерения, наиболее подходящие к существующей ситуации. Одномерное увеличение величины n выливается в увеличение температурной шкалы с помощью коэффициента 2, а не 8. Щелочные металлы, которые отклоняются от обычного электроположительного поведения в ряде случаев за счет низкого электрического смещения, следуют тому же паттерну, что и элементы, перечисленные в предыдущем параграфе, но на шаг ниже, что указывается в нижеприведенном сравнении:
Как мы обнаружили при исследовании удельной теплоты, электроотрицательные элементы ниже смещения 7 обладают половиной начального, отрицательного уровня удельной теплоты: 1/9 единицы вместо обычных 2/9 единицы. Следовало ожидать, что это выльется в итоговую удельную теплоту 8/9 единицы или 2 2/3 R в точке перехода вместо 7/9 единицы (2 1/3 R), которая существует, если начальный, отрицательный уровень равен 2/9 единицы. Но из измеренных величин удельной теплоты ясно, что это не так. Точка первого перехода кривых удельной теплоты электроотрицательных элементов - 2 1/3 R, как и у кривых с отрицательным, начальным уровнем 2/9 единицы (2/3R). Ограничение, мешающее существованию более отрицательного начального уровня удельной теплоты этих элементов, постепенно устраняется, поскольку температуры повышаются так, что в точке перехода действующий отрицательный компонент удельной теплоты составляет обычные 2/9 единицы. — 87 —
|