В томе 3 будет продемонстрировано наличие массы астрономических свидетельств, исчерпывающе указывающих на то, что процесс преобразования водорода не может быть средством для выработки звездной энергии. Но даже без этого свидетельства, опровергающего ныне принятое допущение, станет ясно, что высоко энергетические процессы – преимущественно деструктивные – это не ответ на проблему. Верно, что образование гелия из изотопов водорода продолжается в верном направлении, но дело в том, что увеличение атомной массы, происходящее в результате реакции преобразования водорода, является случайным продуктом процесса, приводящего к совсем другому результату. Главная цель этого процесса, цель, обеспечивающая вероятную разницу, управляющую процессом, - это превращение нестабильных изотопов в стабильные. Топливом для известного процесса преобразования водорода, топливом водородной бомбы и экспериментов, направленных на достижение мощности для слияния, является смесь нестабильных изотопов водорода. Принцип работы – просто ускорение преобразования, вынуждающее реагенты быстро делать то, что они будут делать медленно, не подвергаясь стимуляции. Произвольно допускается, что это тот же самый процесс, посредством которого в звездах генерируется энергия, и что эксперименты слияния проводятся с целью дублирования условий на звездах. Но водород в звездах пребывает в основном в форме устойчивого изотопа с массой 1, и нет оснований полагать, что эта устойчивая атомная структура может возбуждаться, чтобы подвергнуться виду реакции, которому подвергаются нестабильные изотопы по причине своей неустойчивости. Простой факт, что процесс преобразования был бы экзотермическим, не обязательно означает, что он будет происходить спонтанно. Управляющим фактором является относительная вероятность, а не энергетическое равновесие. И, насколько мы знаем, изотоп водорода с массой 1 – такая же вероятная структура, как и атом гелия в любых физических условиях, отличающихся от условий, которые будут обсуждаться в главе 26, приводящих к построению атома. При высоких температурах шансы атомного распада повышаются, но это не обязательно увеличивает пропорцию гелия в конечном продукте. Напротив, как отмечалось раньше, большая кинетическая энергия приводит к большей фрагментации, и, следовательно, благоприятствует меньшей единице, а не большей. Можно ожидать определенного количества перекомпоновки фрагментов, происходящей при условиях высокой температуры, особенно там, где крайние условия временны, как при взрыве атомной бомбы. Но относительные количества разных возможных продуктов перекомпоновки определяются соображениями вероятности. Ввиду того, что устойчивые изотопы более вероятны, чем неустойчивые (именно это и делает их устойчивыми), формирование устойчивого изотопа гелия из атомных и субатомных фрагментов обладает преимуществом перед рекомбинацией неустойчивых изотопов водорода. Но изотоп водорода с массой 1, являющийся основным составляющим звезд, так же устойчив, как и гелий. В высоко энергетических условиях преимущество отдается меньшим единицам, что делает их менее чувствительными к фрагментации и более способными к рекомбинации при разрушении. Следовательно, нельзя ожидать, что рекомбинация фрагментов в гелий при высоко энергетических состояниях будет происходить в достаточно широком масштабе, чтобы составлять главный источник звездной энергии. — 282 —
|