Молекулы в жидкой совокупности пребывают в постоянном движении и часто сталкиваются друг с другом. Определенный процент столкновений, зависящий от температуры, обладает энергией, достаточной для разрыва связей между молекулярными компонентами и разделения каждой молекулы на две части. Обычно части сразу же образуют новые комбинации, но если атом находится в единице пространства электрона, столкновение передает вибрацию вращения каждому из компонентов. (Как отмечалось в главе 13, такие вибрации вращения, электрические заряды, часто создаются при разных видах контактов.) Вибрация вращения – это положительное движение атома водорода относительно связанного пространства электрона и отрицательное* движение электрона относительно атома хлора. Таким образом, создание зарядов – это процесс нулевой энергии, он не прибавляется к энергии системы. Сейчас молекула HCl становится молекулой Н+, ионом, и атомом Cl, связанным с заряженным электроном, скажем, ионом Cl-. Заряды новых молекул или ионов балансируют валентности связанных с ними атомов. Поэтому ионы устойчивы в том же смысле, что и исходные молекулы HCl, за исключением наличия довольно сильного стремления к новым комбинациям, ограничивающего итоговую величину ионизации. Сейчас давайте вернемся к исследованию эффектов, которые создаются, когда напряжение прикладывается так, чтобы вызывать градиент напряжения в ионизированной жидкости. Это достигается помещением в жидкость двух электрических проводников или электродов и подсоединением их к источнику тока так, чтобы электроны извлекались из положительного* электрода, анода, и входили в отрицательный* электрод, катод. Жидкости, такие как HCl, не являются проводниками электричества в том смысле, в котором этот термин применяется к металлам; то есть, они не позволяют свободное движение электронов. Однако введение разности потенциалов создает движение ионов в ионизированной жидкости. Как мы видели в главе 15, разность потенциалов выталкивает некоторые электроны катода в пространственный эквивалент времени и извлекает такое же число электронов из пространственного эквивалента времени в анод. Некоторые контакты с молекулами жидкости обладают достаточной энергией, чтобы передавать заряды электронам поблизости от катода. Таким образом, вблизи жидкости накапливается какое-то количество отрицательного* заряда. Этот процесс известен как поляризация. В аноде извлечение электронов создает дефицит электронов относительно концентрации равновесия. Это ведет к разрыву некоторых нейтральных комбинаций положительных* атомов и отрицательных* электронов. Высвобожденные электроны поглощаются электронным “вакуумом”, теряя заряды в этом процессе. Это создает избыток положительно* заряженных ионов; то есть, область вблизи анода обладает положительной* поляризацией. — 196 —
|