Если переориентация электронов совершается в ответ на факторы окружающей среды, она не может переворачиваться против сил, связанных с этими факторами. Поэтому в незаряженном состоянии электроны не могут покидать проводник. Единственное активное свойство незаряженного электрона – пространственное смещение, и отношение этого пространства к пространству продолжений не является движением. Комбинация вращательных движений (атома или частицы) с итоговым смещением в пространстве (скорость больше единицы) может двигаться только во времени, как указывалось раньше. Комбинация вращательных движений с итоговым смещением во времени (скорость меньше единицы) может двигаться только в пространстве, поскольку движение – это связь между пространством и временем. Но единица скорости (естественный нуль или начальный уровень) – это единство в пространстве и во времени. Из этого следует, что комбинация движений с итоговым смещением скорости равным нулю может двигаться либо во времени, либо в пространстве. Обретение единицы отрицательного* заряда (на самом деле, положительного по характеру) электроном, который в незаряженном состоянии обладает единицей отрицательного смещения, уменьшает итоговое смещение скорости до нуля и позволяет электрону свободно двигаться либо в пространстве, либо во времени. Создание заряженных электронов в проводнике требует лишь передачи незаряженному электрону достаточной энергии для приведения существующей кинетической энергии частицы к эквиваленту единицы заряда. Если электрон проецируется в пространство, дополнительное количество энергии требуется для того, чтобы оторваться от твердой или жидкой поверхности и преодолеть давление, оказываемое окружающим газом. Обладающие энергиями ниже этого уровня заряженные электроны прикованы к проводнику так же, как и незаряженные. Энергию, необходимую для создания заряда и выхода из проводника, можно поучить многими способами, каждый из которых представляет собой способ создания свободно движущихся заряженных электронов. Удобный и широко используемый способ обеспечивает необходимую энергию посредством разности потенциалов. Это увеличивает поступательную энергию электронов до тех пор, пока она не удовлетворяет требованиям. Во многих применениях необходимое приращение энергии сводится к минимуму путем проецирования вновь заряженных электронов в вакуум, а не требованием преодоления давления газа. Катодные лучи, применяемые в создании рентгеновских лучей, - это потоки заряженных электронов, спроецированных в вакуум. Использование вакуума тоже является характеристикой термоэлектронного создания заряженных электронов, у которых необходимая энергия вводится в незаряженные электроны посредством тепла. При фотоэлектрическом создании энергия поглощается из излучения. — 155 —
|