27 представляет такое сравнение, опуская элементы Деления I со смещениями 1 и 2. Таблица 27: Термоэлектрическая мощностьДеление
Причина не включения в таблицу в том, что элементы Деления I каждой группы вращения следуют своему конкретному паттерну. У них фактор, контролирующий термоэлектрическую мощность, - это магнитное смещение вращения, а не электрическое смещение. Из-за единичного вращения электрона область магнитных смещений от 1-1 до 4-4 становится двумя делениями, с переворотом знака на границах. По причинам симметрии внутренний раздел от 2-2 до 3-3 составляет одно деление, в котором смещение одних элементов, натрия, калия и рубидия, обладает отрицательными термоэлектрическими напряжениями. Соответствующие члены внешних групп, литий и цезий, обладают положительными напряжениями. Смещение двух элементов может следовать либо магнитному, либо электрическому паттерну. Один из них, включенный в эталонную таблицу, кальций, обладает тем же отрицательным напряжением, что и его сосед калий, но магний, соответствующий член следующей более низкой группы, принимает положительное напряжение более высоких элементов Деления I. Рисунок 16: Абсолютная термоэлектрическая мощность – Платина
Хотя описываемое в данной работе теоретическое развитие еще не распространялось на количественные аспекты термоэлектрических эффектов, обсужденных до сих пор, интересно отметить, что отношение термоэлектрической мощности к температуре обладает многими характеристиками, с которыми мы сталкивались в предыдущем обсуждении реакции других свойств материи на температурные изменения. Это хорошо проиллюстрировано на рисунке 16, демонстрирующем отношение между температурой и абсолютной термоэлектрической мощностью платины. Без заглавия было бы трудно отличить эту схему от схемы температурного расширения или от удельной теплоты элемента одной из более низких групп. И это не случайно. Кривые похожи потому, что во всех случаях применяются одни и те же базовые коэффициенты. У кривой платины начальный уровень положительный, а приращения за счет более высокой температуры отрицательные. Такое поведение перевернуто у таких элементов как вольфрам, который обладает отрицательным начальным уровнем и положительными температурными приращениями вплоть до температуры около 1400?К. Выше этой температуры прослеживается тенденция понижения. Нижняя часть кривой (линейная, как обычно) – это второй сегмент. На современной стадии теоретического развития представляется вероятным, что здесь работает общее правило; то есть, второй сегмент каждой кривой, многоединичный сегмент, направлен в сторону отрицательных величин, не зависимо от направления первого (одноединичного) сегмента. — 127 —
|