Вот в чем причина, почему серьезные недостатки специальной теории рассматриваются так снисходительно. Нет ничего более приемлемого (хотя имеются альтернативы интерпретации Эйнштейна уравнений Лоренца, одинаково соответствующие доступной информации), и физики не хотят признаваться, что могли упустить правильный ответ. Но факты – упрямая вещь. Специальная теория не прибавила к уже существующему знанию никакой новой правомочной концептуальной информации. Это ничто иное, как ошибочная гипотеза - заметное дополнение к историческому досье, процитированному Джинсом: “История теоретической физики – это досье о правильном или почти правильном облачении математических формул в физические интерпретации, чаще всего крайне неверные”.[51] “В качестве чрезвычайных мер, - говорят Тоулмин и Гудфилд, - физики прибегали к случайным математическим выдумкам”.[52] В этом-то все и дело. Уравнения Лоренца – просто надуманные факторы, инструментарий для примирения противоречащих результатов. В рассматриваемом случае двух фотонов, если скорость света постоянна независимо от системы отсчета, как эмпирически установлено экспериментом Майкельсона-Морли, тогда скорость фотона Х относительно фотона Y равна единице. Но если скорость измеряется стандартным способом (предположим, что это физически возможно), делением координатного расстояния xy на затраченное приборное время, относительная скорость равна двум естественным единицам (2с в традиционной системе единиц), а не одной. То есть, имеется бросающееся в глаза расхождение. Два разных измерения одной и той же относительной скорости дают два разных результата. И природа проблемы, и природа математического ответа, представленного уравнениями Лоренца, могут проясняться посредством рассмотрения простой аналогии. Давайте представим ситуацию, в которой свойство направления существует, но не осознается. Затем представьте, что для измерения движения существуют два независимых способа: один измеряет мгновенную скорость (векторная величина), а другой – быстроту, с которой меняется расстояние от конкретной точки отсчета (скалярная величина). Если существование направления не осознается, будет допускаться, что оба способа измеряют одну и ту же величину, и разные результаты окажутся неожиданным и необъяснимым расхождением, подобным расхождению, появившемуся на свет в эксперименте Майкельсона-Морли. Аналогия – не точное представление. Если бы это было так, она не была бы аналогией. Но в степени, в какой аналогия применима к рассматриваемому явлению, она способствует пониманию аспектов явления, которые во многих случаях не могут постигаться напрямую. В условиях аналогии, очевидно, что выдуманный фактор, применимый к общей ситуации, невозможен. Но при каких-то определенных обстоятельствах, таких как равномерное линейное движение под постоянным углом к линии отсчета, математическое отношение между двумя измерениями постоянно. Следовательно, выдуманный фактор, включающий постоянное отношение - косинус угла отклонения - сводил бы противоречащие измерения к математическому совпадению. — 88 —
|