Например, частица “эта” с наблюдаемой массой 549 мэв и сроком жизни 0,25 x 10-16 секунд – по-видимому, гравитационно не заряженный атом к-Be7, который теоретически обладает массой 532 мэв. Более сомнительное определение относится к частице “ро” - к-Li-5. В этом случае теоретическая масса составляет 745 мэв, а наблюдаемые величины пребывают в диапазоне от 759 до 770, причем более поздние измерения - самые высокие. Сообщается, что срок жизни ро составляет около 110-23 секунд, но этого слишком мало, чтобы быть временем распада. Очевидно, это время фрагментации - концепции, которая будет объясняться в связи с обсуждением создания частиц в ускорителях. И к-Li-5, и к-Be7 являются обычным следствием распада - фактом, подкрепляющим предыдущие определения. В следующей главе будут рассматриваться наблюдения частиц, пребывающих вне обычной последовательности распада. Если в сериях космического атома входящий космический атом находится выше к-криптона, так что не может войти в нормальную последовательность распада как элементы с более низким атомным номером, он вынужден делиться на части в конце надлежащей единицы времени. И поскольку он не может испускать безмассовые нейтроны, как это делают более легкие атомы, он фрагментируется на меньшие единицы, которые затем следуют нормальному ходу распада. Глава 16Строительство космического атома По существу, распад космического луча – это процесс, при котором высоко энергетические комбинации движений, неустойчивые при скоростях меньше скорости света, проходят через серии шагов до низко энергетических структур, устойчивых на более низких скоростях. Требование, которое должно удовлетворяться для осуществления процесса, - существование низко энергетического окружения, способного служить сточной трубой для энергии, извлекаемой из космических структур. Когда случайно или сознательно создается высоко энергетическое окружение, процесс распада переворачивается, и из космических элементов более высоких атомных номеров или из материальных частиц создаются космические элементы более низких атомных номеров. Поглощаемая из окружения кинетическая энергия удовлетворяет дополнительным потребностям в энергии. Первый шаг в обратном процессе – инверсия последнего шага в процессе распада: эквивалент нейтрона превращается в одну из систем вращения атома космического криптона посредством инверсии ориентации в связи с нулевыми точками пространства-времени. С практической точки зрения удобнее работать с электрически заряженными частицами. Поэтому стандартная техника создания переходных частиц такова: в качестве “сырья” для строительства космического атома воспользоваться протонами или атомами водорода, которые фрагментируются на протоны. В высокоэнергетическом окружении, которое создается в ускорителях частиц, протон М 1-1-(1) испускает электрон М 0-0-(1), а затем распадается на два безмассовых нейтрона М ?-?-0, каждый из которых превращается в половину атома к-криптона (то есть, в одну из систем вращения этого атома) посредством направленной инверсии. Половинки атомов к-криптона не могут прибавлять смещение и становятся мюонами, потому что не способны вмещать массу протона, которая удерживается как гравитационный заряд (половину нормальной величины, поскольку протон обладает лишь одной системой вращения). Они остаются как частицы определенного типа, каждая с половиной массы к-криптона (52 мэв) и половиной 931 мэв массы обычного гравитационного заряда, в сумме 492 мэв. Их можно определить как К мезоны или каоны, наблюдаемая масса которых равна 494 мэв. — 176 —
|