Новая наука о жизни

Страница: 1 ... 5354555657585960616263 ... 202

Различие между этими двумя подходами можно яснее увидеть в историческом контексте. Сама кван­товая теория была изначально разработана в связи со свойствами простых систем, таких как атомы водо­рода. Со временем были введены новые фундамен­тальные принципы, чтобы объяснить эмпирические наблюдения, например тонкую структуру спектров излучения атомов. Первоначальные квантовые числа, характеризующие дискретные электронные орбитали, были дополнены другим набором чисел, определяю­щих угловой момент и затем «спин». Последний счи­тается неотъемлемым (нередуцируемым) свойством частиц, таким же как электрический заряд, и имеет собственный закон сохранения. В физике ядерных частиц еще более нередуцируемые факторы, такие как «странность» и «очарование», вместе с дополни­тельными законами сохранения были введены более или менее специальным образом, чтобы объяснить наблюдения, не объяснимые с помощью уже сущест­вовавших квантовых факторов. Более того, открытие большого числа новых субатомных частиц привело к необходимости постулировать все возрастающее чис­ло новых видов материальных полей.

Когда уже так много новых физических принципов и физических полей было введено для объяснения свойств атомов и субатомных частиц, то распространен­ное допущение, что на уровнях организации выше атома новые физические принципы или поля не играют роли, кажется весьма произвольным. На самом деле оно есть немногим более нежели реликт атомизма девятнад­цатого века; теперь, когда атомы уже более не счита­ются конечными и неделимыми, его изначальное теоре­тическое оправдание перестало существовать. С точки зрения гипотезы формативной причинности, хотя су­ществующая квантовая теория, разработанная для опи­сания свойств атомов и субатомных частиц, проливает много света на природу этих морфогенетических полей, она не может быть экстраполирована для описания морфогенетических полей более сложных систем. Нет причин считать, что морфогенетические поля атомов занимают привилегированное положение в системе природы; они являются просто полями морфических единиц на одном определенном уровне сложности.

4.4. Вероятностные процессы в биологическом морфогенезе

Есть множество примеров физических процессов, имеющих вероятностные пространственные результаты. В общем случае изменения, включающие нару­шения симметрии или гомогенности, являются нео­пределенными; примеры такого рода можно найти в фазовых переходах между газообразным и жидким, а также жидким и твердым состояниями. Если, напри­мер, сферический баллон, наполненный паром, охлаж­ден до температуры ниже точки насыщения в отсутст­вие внешних градиентов температуры и силы тяжес­ти, жидкость начнет конденсироваться на стенках, но конечное ее распределение будет непредсказуемо и почти никогда не будет сферически симметрично[110]. Термодинамика может предсказать относительные количества жидкости и пара, но не их пространствен­ное распределение. При кристаллизации вещества в однородных условиях пространственное распределе­ние, а также число и размеры кристаллов не могут быть предсказаны; другими словами, если бы тот же самый процесс повторялся в аналогичных условиях, каждый раз пространственный результат различался бы в деталях.

— 58 —
Страница: 1 ... 5354555657585960616263 ... 202