Квантовая механика раз и навсегда перечеркнула детерминизм, на котором покоилась старая физика, и внесла в науку неизбежный элемент непредсказуемости. Бескрылая и плоская однозначность уступила место вероятностному подходу. Зная исходные параметры системы, мы уже не можем гарантировать вполне определенного результата, а говорим лишь о том, что система будет находиться в том или ином состоянии с некоторой вероятностью. Это было настолько непривычно и удивительно! Даже такой еретик и революционер, как Альберт Эйнштейн, однажды в связи с этим в сердцах заявил, что Бог не играет в кости. Тем не менее большинство ученых сразу же приняли квантовую механику, поскольку она давала прекрасное согласование с экспериментом. Из принципа неопределенности самым непосредственным образом вытекает так называемый корпускулярно-волновой дуализм. Любая частица может запросто обернуться волной, и наоборот: суть вещей, как ни странно, ускользает от строгих формулировок. Скажем, электромагнитное излучение распространяется в виде фиксированных порций, или квантов, что убедительно продемонстрировал Макс Планк. Однако в соответствии с принципом неопределенности Гейзенберга фотоны (кванты электромагнитного излучения) в то же самое время ведут себя как волны, не имеющие определенного положения в пространстве, но «размазанные» по нему с некоторым распределением вероятности. Свет в данном случае – отнюдь не исключение; точно так же ведут себя все прочие частицы, которые принято называть элементарными. Физики немного лукавят, когда говорят, что электрон вращается вокруг атомного ядра, потому что в действительности ни о каком движении в привычном понимании этого слова здесь не может быть и речи: электрон не крутится, как заведенный, но находится в некотором определенном состоянии, которое описывается сложной волновой функцией. Иными словами, мы имеем право говорить только лишь о вероятности пребывания электрона в той или иной точке. Закончим на этом наш короткий экскурс в квантовую механику и перейдем к рассмотрению элементарных частиц как таковых. Если фотон или электрон бесспорно элементарны, то этого никак не скажешь о начинке атомного ядра – протонах и нейтронах, поскольку они имеют сложную внутреннюю структуру. Обе эти частицы представляют собой кварковые триплеты, то есть построены из более фундаментальных кирпичей – кварков, тех самых кварков, за открытие которых Мюррей Гелл-Манн был удостоен Нобелевской премии. Однако обо всем по порядку. Основными свойствами всех без исключения элементарных частиц являются масса, заряд и спин. Масса частицы составляет часть ее полной энергии, потому что масса – это всего лишь другая ее форма. Масса может быть преобразована в энергию, и наоборот; взаимосвязь между этими двумя сторонами одной медали легко видеть в знаменитой формуле Альберта Эйнштейна Е = mс2, где Е – энергия, m – масса, а с – скорость света. Одни частицы имеют массу, а другие ее лишены. Например, физики говорят, что масса покоя фотона равняется нулю. Это просто-напросто означает, что покоящихся фотонов в природе не существует. Остается добавить, что распределение частиц по массам не подчиняется никакой внятной закономерности. — 61 —
|