Дарвин и сам признавал, что неспособность его теории объяснить постоянство фамильных черт относится к числу серьезных изъянов, избавиться от которых ему не под силу. По иронии судьбы, решение этой проблемы было найдено Грегором Менделем спустя всего лишь несколько лет после выхода в свет дарвиновского «Происхождения видов», однако несколько десятилетий оставалось без внимания, пока не было вновь найдено в начале XX века. Тщательное экспериментирование с садовым горошком привело Менделя к выводу о существовании «единиц наследственности» (впоследствии получивших название генов), которые в процессе размножения не смешиваются, а передаются из поколения в поколение в неизменном виде. Это открытие уже давало возможность предположить, что случайные мутации не исчезают за несколько поколений, а сохраняются, и в дальнейшем либо поддерживаются, либо подавляются естественным отбором. Открытие в 1950-х годах Уотсоном и Криком физической структуры генов привело к пониманию генетической устойчивости как безошибочной саморепликации двойной спирали ДНК, а мутаций, соответственно, как случайных и очень редких погрешностей этого процесса. В течение последующих десятилетий такое понимание прочно утвердило представление о генах как о вполне конкретных и стабильных единицах наследственности [18]. Последние достижения молекулярной биологии, однако, подвергают серьезной проверке на прочность наше понимание генетической устойчивости, а вместе с ним и все представление о генах как об обусловливающих факторах биологической жизни, прочно укоренившееся и в популярном, и в научном мышлении. Как пишет Эвелин Фокс Келлер: Поистине, генетическая устойчивость, вне всякого сомнения присущая всем известным организмам, остается на сегодня таким же удивительным свойством, как и прежде... Трудности возникают, когда мы задаемся вопросом о том, как эта устойчивость поддерживается, — вопросом, который оказался значительно сложнее, чем нам представлялось [19]. Когда хромосомы клетки удваиваются в числе в процессе клеточного деления, нити двойных спиралей их молекул ДНК разделяются, и каждая из них служит шаблоном для выстраивания новой комплементарной цепи. Такая саморепликация происходит с поразительной точностью. Частота ошибок копирования (мутаций) составляет всего около одной десятимиллиардной! Эта высочайшая точность, лежащая в основе генетической устойчивости, не является исключительно следствием физической структуры ДНК. Собственно говоря, сама по себе молекула ДНК к саморепликации вообще не способна. Каждый шаг этого процесса управляется особыми ферментами [20]. Ферменты одного рода помогают двум родительским нитям разойтись, другие не дают им сойтись обратно, а огромное множество остальных отбирают нужные генетические элементы, или «основания», для комплементарного связывания, проверяют наиболее часто встречающиеся из них на точность местонахождения, исправляют несоответствия и устраняют случайные нарушения структуры ДНК. Без этой изощренной системы отслеживания, проверки и исправления количество ошибок саморепликации было бы гораздо большим. По имеющимся оценкам, неверно скопированным оказалось бы не каждое десятимиллиардное, а каждое сотое основание [21]. — 129 —
|