Десять великих идей науки. Как устроен наш мир

Страница: 1 ... 197198199200201202203204205206207 ... 300

Теперь я ослаблю мое настойчивое стремление рассуждать в терминах фундаментальных единиц и обращусь к меркам фермерского двора, так как на этой стадии эволюции Вселенной они являются много более удобными, чем планковские естественные единицы. Однако вам следует иметь в виду, что моргание на самом деле является в условных единицах эпохой почти неизмеримой длительности. То, что кажется нам мимолетным, может быть цепочкой бесчисленных событий в естественных, фундаментальных единицах. Полет пули со скоростью звука на расстояние ширины атомного ядра длится почти вечность, сто триллионов триллионов (1026) планковских тиканий.

Через секунду после начала, стряхнув с себя вещество, от него отделились нейтрино. Никогда больше они не будут заметно взаимодействовать с ним, и с этого момента будут летать по Вселенной почти беспрепятственно, свободно несясь в пространстве и проницая планеты, как если бы они были почти прозрачными кристаллическими сферами. Если бы у нас были глаза для созерцания нейтрино, почти безмассовых частиц со спином и ароматом, мы видели бы мир почти пустым, наполненным здесь и там лишь призрачными тенями.

С первого взгляда мы можем ожидать, что нейтринное небо будет ярче фотонного, поскольку в нейтрино сохранился отпечаток Вселенной в форме ее температуры в момент их первичного отделения, и продолжающееся расширение Вселенной охладило их меньше. Но, на самом деле, фоновые нейтрино холоднее, чем фоновые микроволны: их температура немного ниже 2 градусов над абсолютным нулем. Причиной большей прохладности нейтринного неба является то, что различные события, особенно столкновения электронов с их античастицами позитронами, увеличили число фотонов и повысили яркость, а значит, и температуру микроволнового неба. Через три минуты после начала температура упала до 1 миллиарда градусов. Было так холодно (только 10?23 планковских градусов), что в этих арктических условиях даже нуклоны смогли склеиться вместе, образуя дейтерий (тяжелый водород с ядром, состоящим из нейтрона, склеенного с протоном) и гелий (два протона и два нейтрона, склеенных вместе). Вычисления показывают, что, когда температура продолжала падать, эта эпоха Вселенной произвела 23 процента гелия, 77 процентов остаточного водорода (неприсоединенные протоны) и намеки на более тяжелые элементы (литий и бериллий, например, с тремя протонами и четырьмя протонами соответственно и несколькими нейтронами, прицепленными к ним и помогающими удерживать протоны вместе). Распространенность гелия критическим образом зависит от числа типов нейтрино и несовместимо с любым числом, большим четырех. Как мы видели в главе 6, существуют три известных аромата нейтрино, что удовлетворяет этому ограничению. Но гораздо более важно то, что мы видим, какими масштабными — в данном случае это распространенность гелия во Вселенной — являются следствия идей, происходящих в результате изучения очень малого. Эта взаимная совместимость знаний, происходящих из изучения огромного и мельчайшего, вдохновляет на еще большее доверие к достижениям науки.

— 202 —
Страница: 1 ... 197198199200201202203204205206207 ... 300