? закон электромагнитной индукции, который открыл опытным путем Майкл Фарадей (1791–1867). Он продемонстрировал, как магнитное поле, изменяющееся во времени, порождает электрическое поле; ? закон Ампера, который экспериментально открыл Андре Мари Ампер (1775–1836). Этот закон описывает, как магнитное поле порождается электрическим током. Электрический ток представляет собой просто движущийся заряд; ? закон Гаусса — теорема, предложенная Иоганном Карлом Фридрихом Гауссом (1777–1855). Этот закон показывает, как электрическое поле, образованное на замкнутой поверхности, зависит от электрического заряда, находящегося внутри этой поверхности. Заметьте, что если сила электрического взаимодействия вызвана статическим зарядом, а сила магнитного взаимодействия — движущимся зарядом, то с точки зрения принципа относительности Галилея они должны быть равны. Локализация каждого из них зависит от системы отсчета наблюдателя. Это принципиально важный момент, редко упоминающийся в учебниках и на занятиях по физике. С точки зрения физики поле — это математический объект, имеющий значение в каждой точке пространства. Если это значение может быть выражено одним числом, как в случае плотности или давления жидкостей, газов и твердых тел, то такое поле называется скалярным. Оно может быть выражено также системой чисел. Ньютоновское гравитационное поле, электрическое и магнитное поля — векторные, требующие трех чисел для определения каждой точки в пространстве: одно выражает абсолютное значение величины, а два других — направление распространения поля. Гравитационное поле в общей теории относительности Эйнштейна — это тензорное поле, определяющееся десятью независимыми числами. Ранее Фарадей и Ампер продемонстрировали, что электричество и магнетизм представляют собой одно и то же явление, объединив тем самым две силы, до того рассматривавшиеся по отдельности. Уравнения Максвелла систематизировали эти новые данные. Теория Максвелла содержит полное описание классического электромагнитного поля. Уравнения Максвелла применимы для любых вариантов распространения электрических зарядов и токов в любой среде. С их помощью можно рассчитать электрическое и магнитное поля в любой точке пространства или материальной среды. Добавив всего одно уравнение, предложенное Хендриком Лоренцем (1853–1928), можно определить силу электрического или магнитного взаимодействия заряженных частиц в любой точке электрического поля и с помощью ньютоновской механики предсказать местоположение и скорость этой частицы в любой момент в будущем (или в прошлом, если уж на то пошло). Вот еще один довод в пользу концепции ньютоновской мировой машины. — 63 —
|