В 1939 году за эту крайне интригующую тему взялся Гамов. Он решил использовать новую ядерную физику Бете, в которой анализировалось излучение звезд и поворотный момент в их эволюции, наступающий после полного сгорания топлива и последующего старения. Гамов разработал сценарий эволюции, который предполагал, что излучение стабильных звезд растет до тех пор, пока они не сожгут весь свой водород. Затем они сжимаются, их свет тускнеет, и в конце концов они превращаются в белых карликов, если их масса меньше критической. Те же звезды, масса которых превышает предел Чандрасекара, взрываются, образуя сверхновую звезду, и в конечном итоге превращаются в нейтронные звезды. Вслед за Бете он пришел к выводу, что источник излучения тяжелых звезд, таких как красные гиганты, не водород. Гамов предположил, что эти образования — молодые звезды и излучают они благодаря гравитационному сжатию частиц газа, из которых состоят. В конце концов они тоже начнут сжигать водород, как и звезды с меньшей массой, и взорвутся, образуя фрагменты белого карлика. Чандра прекрасно ориентировался в проблемах, связанных со стабильностью звезд. Его сильной стороной было определение момента, с которого звезда начинает коллапсировать. Он заметил ошибку в доказательствах Гамова. Проблема была очень сложной, и Чандра решил еще раз обратить свое внимание на белых карликов. Теперь уж — в последний раз. Миллиарды лет, в течение которых звезда находится в своем расцвете, она сжигает водород в ядре и преобразует его в гелий, оставляя гелиевую «золу». Водород в центре горит первым, потому что именно там его концентрация максимальна, да и температура выше. Эта фаза называется горение водородного ядра. Когда ядра атомов водорода (протоны) объединяются, в результате процесса синтеза получается гелий, при этом высвобождается энергия, а водородное ядро постепенно превращается в гелиевое. Гамов сделал сильное предположение, что звезда сжигает весь свой водород, но, по мнению Чандры, это означало, что у нее становится все более тяжелое гелиевое ядро. Это его озадачило. Он решил разобраться в проблеме вместе с бразильским аспирантом Марио Шёнбергом, который знал ядерную физику звезд лучше, чем Чандра[55]. Чандра и Шёнберг хотели понять, действительно ли это новое гелиевое ядро может оставаться стабильным без коллапса и взрывов в течение всего процесса горения водорода. Они получили неожиданный результат: гелиевое ядро достигает максимальной массы не коллапсируя, когда сгорает лишь 10 процентов водорода. (Это вошло в науку как предел Чандры — Шёнберга.) Но что же происходит потом? — 132 —
|