Дао физики

Страница: 1 ... 8384858687888990919293 ... 195

Кроме того, можно рассматривать движение определенной точки волны, и тогда мы увидим колебания определенной частоты (частота определяется количеством целых колебаний за одну секунду). Теперь представим себе частицу. Согласно классическим представлениям, частица в любой момент времени имеет определенное положение, а ее состояние движения может быть описано в терминах ее скорости и энергии движения. Частицы, двигающиеся на высокой скорости, характеризуются высокой же энергией. Физики, как правило, редко пользуются "скоростью" для описания движения частицы, заменяя ее величиной, которая называется "импульс" и равняется произведению массы частицы на ее скорость.

Итак, квантовая теория связывает свойства вероятной волны со свойствами соответствующей частицы, соотнося амплитуду волны в определенной точке с вероятностью существования в этой точке частицы. Если амплитуда большая, то велика и вероятность того, что частица находится в этой точке; если нет, то вероятность этого мала. Амплитуда волны, изображенной на предыдущей странице, одинакова на всем ее протяжении, и поэтому частица может с равной вероятностью находиться в любой точке волны. В этом случае не следует думать, что частица с большей вероятностью находится там, где волна образует гребень, чем в районе подошвы волны. На самом же деле колебания первичны. и любая точка волны принимается за вершину гребня через определенные периоды времени.

Движение частицы может быть охарактеризовано частотой и длиной волны. Длина волны обратно пропорциональна импульсу частицы, что означает, что волна с меньшей длиной соответствует частице, движущейся с большим импульсом (а следовательно, и скоростью). Частота волны прямо пропорциональна энергии частицы: волна с высокой частотой соответствует частице с высокой энергией. Так, в случае со светом, фиолетовый свет характеризуется высокой частотой и маленькой длиной волны, а следовательно, состоит из фотонов с высокой энергией и высоким импульсом, а красный свет характеризуется низкой частотой и большой длиной волны, что соответствует фотонам с низкой энергией и небольшим импульсом.

Волна, распространяющаяся в пространстве так, как описано выше, мало говорит нам о местонахождении частицы. Она может находиться в любой точке вдоль волны с одинаковой вероятностью. Однако очень часто мы имеем дело с ситуациями, в которых местонахождение частиц до какой-то степени известно, как, например, при описании электрона внутри атома. В таком случае вероятности существования в различных точках должны быть ограничены некоторой областью. За ее пределами вероятность должна равняться нулю. Этому условию удовлетворяет график, представленный на рис. 15, и соответствующий частице, ограниченной пределами области X. Волны таких очертаний называются сжатыми волнами. Здесь, для простоты, мы рассматриваем только одно пространственное измерение, то есть положение частицы на прямой. Вероятностные паттерны (см. рис. 9) представляют собой изображение двухмерных, более сложных сжатых волн. Сжатая волна (волновой пакет) состоит из нескольких волн с различной длиной волны, которые, интерферируя, уничтожают друг друга вне области Х (см. рис. 1), так что общая амплитуда, а с ней и вероятность существования там частицы равняется нулю, в то время как внутри этой области возникает определенный колебательный паттерн. Он показывает, что частица находится где-то в X, но не позволяет определить ее местонахождение более точно. Мы можем только вычислить вероятность для каждой точки X. (Скорее всего, частица находится где-то в середине, так как там амплитуда наиболее велика; менее вероятно, что частица расположена у края сжатой волны, так как там амплитуда колебаний очень мала). Следовательно, протяженность сжатой волны является мерилом неопределенности в местонахождения частицы.

— 88 —
Страница: 1 ... 8384858687888990919293 ... 195