Однако эта форма материи, обладающая многообразием очертаний, структур и сложной молекулярной архитектурой, может существовать лишь при том условии, что температура не очень высока, и колебательные движения молекул не очень сильны. Все атомные и молекулярные структуры разрушаются при увеличении термической энергии примерно в сто раз, что, например, имеет место внутри большинства звезд. Получается, что состояние большей части материи во Вселенной отличается от описанного выше. В центре находятся большие скопления ядерного вещества; там преобладают ядерные процессы, столь редкие на Земле. Эти процессы являются причиной разнообразных звездных явлений, наблюдаемых астрономией, большая часть которых вызвана ядерными и гравитационными эффектами. Для нашей планеты особенно важны ядерные процессы в центре Солнца, питающие энергией околоземное пространство. Современная физика одержала триумфальную победу, обнаружив, что постоянный поток солнечной энергии — результат ядерных реакции. В процессе изучения субмикроскопического мира в начале тридцатых годов нашего столетия наступил этап, принесший уверенность в том, что "строительные кирпичики" материи наконец открыты. Тогда уже стало известно, что вся матерня состоит из атомов, а атомы — из протонов, нейтронов и электронов. Эти так называемые "элементарные" частицы воспринимались как предельно малые, неделимые единицы материи, подобные атомам Демокрита. Хотя из квантовой теории следует, что нельзя разложить мир на отдельные мельчайшие составляющие, в то время это обстоятельство не было осознано всеми. О значительном авторитете классической механики говорит тот факт, что в те годы большинство физиков придерживалось мнения, что материя состоит из "строительных кирпичиков", и даже сейчас эта точка зрения находит достаточно сторонников. Однако последующие достижения современной физики показали, что нужно отказаться от представлений об элементарных частицах как о мельчайших составляющих материи. Первое из них носило экспериментальный характер, второе — теоретический, и оба были сделаны в тридцатые годы. Что касается экспериментальной стороны, то усовершенствование техники проведения эксперимента и разработка новых приборов детекции частиц помогли открыть новые их разновидности. Так, к 1935 году было известно уже не три, а шесть элементарных частиц, к 1955 — восемнадцать, а к настоящему времени их известно более двухсот. В такой ситуации слово "элементарный" вряд ли применимо. По мере увеличения количества известных частиц росла уверенность в том, что не все из них могут так называться, а сегодня многие физики считают, что этого названия не заслуживает ни одна из них. — 44 —
|