Одно из важнейших нововведений теории S-матрицы заключается в том, что она переносит акценты с объектов на события; предмет ее интереса составляют, таким образом, не частицы, а реакции между ними. Такое смещение акцентов вытекает из положений квантовой теории и теории относительности. С одной стороны, квантовая теория утверждает, что субатомная частица может рассматриваться только в качестве проявления взаимодействия различными процессами измерения. Она представляет собой не изолированный объект, а своего рода происшествие, или событие, которое особенным образом реализует связь между двумя другими событиями. По словам Гейзенберга. "[В современной физике] мир делится не на различные группы объектов, а на различные группы взаимоотношений... Единственное, что поддается выделению,-это тип взаимоотношений, имеющих особенно важное значение для того или иного явления... Мир, таким образом, представляется нам в виде сложного переплетения событий, в котором различные разновидности взаимодействий могут чередоваться друг с другом, накладываться или сочетаться друг с другом, определяя посредством этого текстуру целого" [34, 107]. С другой стороны, теория относительности побуждает нас говорить о частицах в терминах пространства-времени, понимая их как четырехмерные паттерны — не столько объекты, сколько процессы. S-матричный подход объединяет обе эти точки зрения. Используя четырехмерный математический формализм теории относительности, такой подход описывает все свойства адронов в форме реакций (или, что более точно, в терминах вероятностей реакций), устанавливая, таким образом, тесную взаимосвязь между частицами и процессами. В каждой реакции принимают участие различные частицы, которые связывают ее с остальными реакциями, формируя единую сеть процессов. Нейтрон, например, может участвовать в двух последовательных реакциях, включающих различные частицы: в первой — протон и п-, во второй — Sи К-. Таким образом, нейтрон оказывается звеном, соединяющим две реакции в рамках более масштабного процесса (см. рис. 53, график "а"). Каждая из "входных" и "выходных" частиц в этом процессе может принимать участие и в других реакциях; так, протон может возникнуть благодаря взаимодействию между К+ и Л (см. график "в"). К+ вступит в реакцию с Ки п+, а п — с еще тремя пионами.??? В результате наш нейтрон оказывается звеном в огромной сети взаимодействий, сети "переплетения событий", если говорить языком S-матрицы. Взаимодействия внутри такой сети не могут быть определены со стопроцентной точностью. Им можно приписать только вероятностные характеристики. Для каждой реакции характерна та или иная вероятность, зависящая от запаса энергии и других параметров реакции, и все эти вероятности определяются различными элементами S-матрицы. При этом мы можем дать в высшей степени динамическое описание структуры адрона (см. рис. 54). В этом новом контексте нейтрон из нашей сети может рассматриваться в качестве "связанного состояния" протона и п-, из которых он образовался, а также в качестве связанного состояния Sи К-, которые образуются в результате его распада. Каждое из этих двух сочетаний адронов, как, впрочем, и многие другие, может преобразоваться в нейтрон, а следовательно, они могут быть названы компонентами его "структуры". Тем не менее, структура адрона понимается в данном случае не в качестве некоего соединения составных частей, а в качестве соотношения вероятностей участия различных частиц в образовании того или иного адрона. При таком подходе протон потенциально присутствует внутри пары нейтрон-пион, каон-ламбда и т. д. Помимо этого, протон обладает потенциальной способностью распадаться на каждое из этих сочетаний при наличии достаточного количества энергии. Склонность адрона к существованию в различных проявлениях определяется вероятностями соответствующих реакций, каждая из которых может рассматриваться в качестве одного из аспектов внутренней структуры адрона. — 151 —
|