Но каким образом столь малая разница на входе могла привести к такому разительному расхождению на выходе? Эдуард Лоренц заново открыл явление, о котором говорил Пуанкаре. В своей статье 1963 года «Детерминированное непериодическое течение» [в кн.: Странные аттракторы. М., 1981] Лоренц указывает, насколько конечный результат чувствителен к начальным условиям. На рис. 5.4 представлена кривая трехмерной функции, порождаемой нелинейными уравнениями данного рода. Хотя ее значения так и не сходятся к одной точке, они колеблются вокруг двух точек, словно притягивают к себе функцию, отсюда и название «странный притягиватель (аттрактор)». Чтобы заострить внимание на том, как малые различия ведут к большим последствиям, а возможно, руководствуясь наглядным образом странного аттрактора, свое выступление [в декабре 1972 года перед Американским обществом содействия науке] Лоренц озаглавил так: «Вызовет ли взмах крыла бабочки в Бразилии смерч в Техасе?» Выражение «эффект бабочки» вскоре стало общепринятым. Системы уравнений с подобным поведением уже создавались и изучались независимо от возможности применять их к физическим системам.
Рис. 5.4. Странный аттрактор ХАОС: КУХНЯ В итоге возникла совершенно новая отрасль математики с, пожалуй, вводящим в заблуждение названием «теория хаоса», придуманным математиком Джеймсом Йорком из Мэрилендского университета (см.: Список идей, 12. Теория хаоса). К сожалению, слово хаос подразумевает совершенный беспорядок, что в корне неверно. Погода не носит случайного характера. Общая картина погоды хорошо всем известна: лето теплое, а зима холодная. Чего нам недостает, так это подробностей: насколько теплой или холодной будет погода, и ждать непогоду спустя неделю или же ровно через час. Решение головоломки: как и где? Есть несколько мнений о путях достижения более точного, долгосрочного прогноза погоды. КАК И ГДЕ Улучшение методов
Сборный прогноз. Сборный прогноз — метод, учитывающий чувствительность моделей к малым изменениям в начальных условиях. Данный подход связан с неоднократным прогоном модели, использованием различных начальных условий, чтобы посмотреть, как меняются выходные данные. Если, например, дождь выпадает в четырех испытаниях из десяти, можно прогнозировать 40% вероятности дождя. Обычно модели запускают более 10 раз — часто это 17 прогонов, но порой может быть и 46. Одна из разновидностей данного подхода связана со сравнением результатов различных моделей с последующим прогнозированием на основе средневзвешенного значения. Опытные метеорологи используют ЭВМ, когда сверяют результаты, и порой отклоняют выданный ею прогноз исходя из собственного опыта. — 82 —
|