Инженерная эвристика

Страница: 1 ... 147148149150151152153154155156157 ... 235

ВОПРОС № 96

Миссионер очутился у людоедов и попал как раз к обеду. Дикари разрешают ему выбрать, в каком виде его съедят. Для этого миссионер должен произнести какое-либо высказывание, с условием, что, если оно окажется истинным, его сварят, а если оно окажется ложным, его зажарят. Что следует сказать миссионеру?

Математические парадоксы

Вернёмся к апории «Ахиллес и черепаха», ведь она имеет непосредственное отношение к математике:

«В классическом курсе логики, написанном Вильямом Минто, прославленный бегун легко опережает свою недостойную соперницу, хотя дает ей фору не только в расстоянии — 100 саженей (здесь употреблены старинные русские, а не древнегреческие меры длины, однако это не имеет значения), но и в скорости: он двигается не в полную силу — всего в десять раз резвее черепахи. То есть, по существу, шагает себе не торопясь, уверенный в победе. Правда, добравшись до места, откуда тронулась в путь-дорогу нерасторопная ставленница Зенона, Пелеев сын увидит, что та успела переползти еще на 10 саженей вперед. Пока Ахилл преодолеет эти 10 саженей, черепаха уйдет еще на сажень. Что ж, быстроногому ничего не стоит покрыть какую-то там сажень. А неуклюжая тем временем переместится — пусть на одну десятую сажени, но все-таки вперед, прочь от преследователя! С каждым шагом расстояние сокращается. Таких шагов будет, очевидно, бесчисленное множество. Не беда: современная математика научилась суммировать бесконечные последовательности. И Минто строит бесконечный ряд: 100 + 10 + 1 + 0,1 + 0,01 + 0,001 +… Перед нами убывающая геометрическая прогрессия. Её сумму запросто подсчитает любой теперешний школьник, если, конечно, он уже прошел алгебру по учебнику, кажется, для восьмого класса; эта сумма равна 111 1/9. Проделав нехитрый подсчет, Минто заключает: „Софист хочет доказать, что Ахилл никогда не догонит черепаху, а на самом деле доказывает лишь то, что Ахилл перегоняет её между 111-й и 112-й саженями на их пути“. Вроде бы правильно. Вроде бы логично. Увы, торжествующий опровергатель не ответил посрамленному софисту, ибо вопрос ставился иначе: не когда, а как возможна подобная встреча…» (Бобров, 1966).

Для того чтобы решить фундаментальную задачу, необходимо, как говорится, «докопаться до сути». Именно, «докапывание до сути» и приводит к парадоксам и противоречиям. А затем парадокс или противоречие необходимо разрешить (снять). Так что есть две половинки пути: формулировка противоречия и его разрешение.

Предлагаем ещё один, уже не такой старый парадокс, как в случае с лжецом, — парадокс вероятности.

— 152 —
Страница: 1 ... 147148149150151152153154155156157 ... 235