Как и первая, вторая задача решается взглядом на фотографию. На фотографии представлена область скольжения в монокристалле. Видны выходы дислокаций на поверхность, тех самых, которые, перемещаясь, обусловливают взаимное скольжение частей кристалла. Строго говоря, видны, разумеется, не выходы дислокаций на поверхность, а результат растравливания специальным травителем тех мест, где линии дислокаций пересекают поверхность кристалла. В тех местах, которые растравливаются активнее, чем соседние, образуются «ямки травления». Вот они и видны. Обратимся теперь к третьей задаче. Попробуем ее решить для очень упрощенного случая, а затем, когда получим конечную формулу, полагаю, с удовольствием заметим, что она справедлива и для любого другого случая, отличающегося от упрощенного. Допустим (и в этом смысл упрощения!), что мы хотим осуществить сдвиг вдоль некоторой плоскости в кристалле, имеющем форму куба с ребром l 0 , в котором все дислокационные линии лежат в плоскостях, параллельных плоскости сдвига. Допустим, что боковая поверхность кристалла, имеющая площадь l 02, пересекается дислокационными линиями, при этом в плоскости скольжения расположено п дислокационных линий. Эти дислокации и будут нас далее интересовать, так как именно они и определяют процесс скольжения вдоль избранной плоскости сдвига. Допустим, что в нашем опыте по сдвигу каждая из дислокационных линий еще не успела пройти путь l 0 , а прошла какой-то более короткий путь li . Подвижная часть кристалла относительно неподвижной сместится при этом на расстояние Назовем эту величину плотностью подвижных дислокаций, обозначим ее ?0 и запишем полученную формулу в окончательном виде: ? = ?0bli Удовлетворимся здесь приведенным формальным определением понятия «плотность дислокаций». Подробнее оно обсуждено немного дальше, в очерке о размножении и гибели дислокаций. Чуть-чуть торжественно подведем итог: мы получили одну из фундаментальных формул теории дислокационного деформирования. Она фундаментальна потому, что входящие в нее величины уже потеряли связь с тем упрощенным примером, с которого мы начинали построение теории и в котором предполагалось, что дислокации движутся лишь в одной плоскости скольжения. Полученная формула этого уже не помнит, так как ?0 — плотность всех дислокаций, движущихся в любой из возможных плоскостей скольжения. Воспользуемся формулой для числовой оценки. Допустим, что среднее расстояние между дислокационными линиями ? 10-4 см. Это значит, что плотность подвижных дислокаций ?0 ? 108 см-2. Если в опыте дислокации успели сместиться приблизительно на расстояние между ними, то при b ? 3. 10-8 см величина ? ? 3. 10-4 , т. е. пластическая деформация произойдет на 0,03%. Это ни мало и ни много, а ровно столько, сколько должно быть при такой плотности дислокаций и при таком их смещении. — 59 —
|