Вот в чем заключалась моя идея, она исключительно проста. При конструировании прежних турбин, которые делали французы, немцы и Гипрогаз, в основу были положены принципы конструкции паровых турбин, и, по-моему, это было неправильно. Дело в том, что турбодетандер должен работать при —186 градусов [по Цельсию], а при этой температуре воздух становится тяжелее и его плотность во много раз превышает плотность пара. Поэтому, гораздо правильнее положить в основу конструкции турбины те принципы, на которых работает водяная турбина, т. е. использовать силы, возникающие при движении более тяжелой среды, поэтому при работе турбины не только использовать реакционные силы потока газа, но в кориолисовые силы[93]. На практике это достигается тем, что вместо аксиального пуска газа он делается радиальным. Можно показать теоретически, что такую турбину представляется возможным заставить работать с двойным перепадом давления и, по сравнению с прежними турбинами, при тех же потерях получать двойную мощность. Два года тому назад мы взялись за эту работу, и, как всегда в исследовательской работе, затруднения пришли не с той стороны, откуда их ждали. Оказалось, что турбина при вращении в такой плотной среде, как воздух у точки ожижения, теряла свою устойчивость. Пришлось искать теоретические основания этой устойчивости. В библии современного турбостроения, [в] книге Стодолы (стр. 928, 6-е издание, 1924 г.)[94] говорится «что теория этих явлений чрезвычайно запутана и не разрешена...». Но, не имея теории, нельзя было найти пути для того, чтобы добиться устойчивости. Строя модели и экспериментируя, после 8—9 месяцев работы нам удалось найти теорию этого явления. Тогда все стало просто и легко, и, [когда мы] сделали соответствующие приспособления, турбина стала устойчива. Насколько наша турбина устойчива, видно из следующего: край ротора делает более 200 метров в секунду, т. е. скорость полета дроби из двустволки, а зазор между ротором и кожухом при этом немногим больше 1/10 миллиметра. Между прочим, эти методы стабилизации роторов, возможно, окажут влияние и на большие паровые турбины, там тоже полезно иметь большую устойчивость вращения ротора, чтобы уменьшить зазор между лопатками и кожухом, так как это повысит коэффициент полезного действия. Было еще следующее затруднение. Для нужной нам производительности наша турбина получается очень маленькая — ротор ее свободно помещается на ладони и весит всего 300 грамм, хотя, чтобы снабжать се воздухом, нужен компрессор, который весит 4 тонны. (Это, между прочим, рисует соотношение габаритов поршневых и турбинных механизмов.) Наш ротор делает 46 000 оборотов в минуту. Вначале все подшипники у нас быстро разбалтывались. Изучая причину этого, мы нашли, что это происходит благодаря тому, что оси инерции турбины было невозможно достаточно точно центрировать; тогда был изобретен новый метод подвешивания ротора к оси. Сцепление ротора с осью осуществляется на трении и поэтому ротор становится самоцентрирующим. Возможно, что и этот метод крепления роторов найдет себе более широкое применение в [таких] быстро вращающихся механизмах, как центрифуги, гирокомпасы и пр. — 113 —
|