Среди прочих жидкостей для нас интереснее всего растворы, т. е. когда молекулы какого-нибудь вещества перемешаны с молекулами воды. Для водных растворов весьма характерно явление диссоциации, когда некоторые молекулы растворенного вещества распадаются на отдельные части — ионы. Ион — это осколок молекулы, заряженный положительно или отрицательно. Например, молекула поваренной соли NaCl распадается (диссоциирует) в растворе на положительно заряженный ион Na+ и отрицательно заряженный ион С1~. В чем различие между раствором поваренной соли и кристаллом той же поваренной соли? В кристалле атомы натрия и атомы хлора, отделены друг от друга, они расположены в чередующихся узлах кристаллической решетки. Но при этом и атомы натрия и атомы хлора не имеют своих валентных электронов. При образовании кристалла они потеряли их и превратились в положительно заряженные ионы. Валентные электроны всех атаиов объединились в создали общее электромагнитное поле, удерживающее систему в равновесии. t В растворе атомы натрия я хлора также расселены. Но. если атомчважржя тернка свой; единственны* валентный электрон, то атом хлора приобретает дополнительный электрон. В растворе каждый элеетоон принадлежит какому-нибудь атому, энергетические зоны отсутствуют, а энергия каждого электрона определяется одним вз разрешенных уровней атома. Но почему так происходит? Почему одни и те же атомы ведут себя по-разному в кристалле и в растворе? Молекулы воды представляют собой электрические диполи или, образно говоря, как бы стержня, имеющие явно выраженные положительный и отрицательный концы. Молекула поваренной соли также не совсем симметрична. С одной ее «стороны» слегка преобладает положительный заряд, с другой — отрицательный. Что случается, когда в воду попадает молекула поваренной соли? Ее окружают молекулы воды. Своими положительными концами они притягиваются к отрицательной стороне молекулы поваренной соли, а отрицательными концами — к положительной стороне. Возникает резко несимметричное электромагнитное поле. Молекула поваренной соли разрывается на два иона, и они, в свою очередь, тут же оказываются окруженными молекулами воды. Подобное разделение молекул вещества на ионы и называют диссоциацией. Самой большой потенциальной энергией обладает электрон, не связанный ни с какими атомами. Такую энергию электрона обычно принимают за нуль отсчета. В атоме, находясь в электромагнитном поле ядра и других электронов, каждый электрон обладает меньшей (отрицательной) потенциальной энергией. Представьте себе такую картину. Электрон с нулевой потенциальной энергией попадает в поле положительно заряженного ядра — допустим, речь идет об атоме водорода. Электрон притягивается и движется в сторону ядра, пока не занимает положенное ему в атоме место. Но когда электрон двигается под действием силы, совершается работа. Потенциальная энергия электрона в атоме численно равна нулю (энергия свободного электрона) минус количество работы, совершенной на его пути к атому. — 87 —
|