К тому же гипотеза о положительности массы привела нас с Шоном к доказательству другого утверждения из области общей теории относительности, касающегося так называемых черных дыр. Большинство людей, размышляя о столь причудливых астрофизических объектах, как черные дыры, едва ли как-то связывают их с геометрическими понятиями. Тем не менее геометрия достаточно многое может сказать о черных дырах, и по сути именно ей мы обязаны самой возможностью предсказания существования таких объектов до их обнаружения астрономическими методами. Это предсказание стало триумфом применения геометрического подхода к общей теории относительности. В 1960-х годах Стивен Хокинг и Роджер Пенроуз при помощи геометрических методов, точнее, той особой разновидности геометрии, которая рассматривается в нашей книге, и законов общей теории относительности доказали, что любая ловушечная поверхность , то есть чрезвычайно искривленная поверхность, которую не может покинуть даже свет, обязана в конце концов эволюционировать в сингулярность того типа, который, как полагают, находится в центре черной дыры — в том месте, где кривизна пространства-времени стремится к бесконечности. Оказавшись в черной дыре, можно обнаружить, что при движении к центру кривизна будет неуклонно возрастать. Предела этому возрастанию попросту не существует — кривизна будет возрастать вплоть до самого центра, где ее величина станет равной бесконечности. С кривизной вообще связано много удивительных вещей. Прогуливаясь по поверхности Земли, имеющей огромный (порядка шести тысяч километров), по сравнению с нашим ростом (как правило, не большим двух метров), радиус, мы не ощущаем ее кривизны. Однако если бы мы решили совершить прогулку по планете с радиусом 5-10 метров, такой как планета Маленького Принца у Антуана де Сент-Экзюпери, то пренебречь ее кривизной мы бы уже не смогли. Рис. 3.10а. Стивен Хокинг, физик из Кембриджского университета (фотография Филиппа Уотерсона, LBIPP, LRPS) Рис. 3.10б. Роджер Пенроуз, математик из Оксфордского университета (© Роберт С. Харрис [Лондон]) Рис. 3.11. Чем меньше сфера, тем сильнее она искривлена. Напротив, при стремлении радиуса к бесконечности кривизна уменьшается до нуля Поскольку кривизна сферы обратно пропорциональна квадрату радиуса, возрастание радиуса до бесконечности приводит к уменьшению кривизны до нуля. И напротив, при стремлении радиуса к нулю кривизна неуклонно возрастает и стремится к бесконечности. — 60 —
|