Платоновы тела в буквальном смысле построены на симметрии, как и современные теории в физике. В конце концов, поиски единой всеобъемлющей теории природы, по сути, сводятся к поиску симметрии Вселенной. Отдельные компоненты этой всеобъемлющей теории имеют свои собственные симметрии, такие как внутренняя симметрия калибровочных полей, которые дают нам лучшие современные описания электромагнитных, сильных и слабых взаимодействий. Более того, группы симметрии в этих построениях действительно связаны с симметрией Платоновых тел, хотя и не таким способом, как это представляли древние греки. Сегодняшняя физика строится на дуальностях — идеях, заключающихся в том, что один и тот же физический мир можно описать двумя математически разными способами. Эти дуальности связывают четырехмерные квантовые теории поля с десятимерными теориями струн, десятимерную теорию струн с 11-мерной М-теорией и даже обнаруживают физическую эквивалентность между двумя многообразиями Калаби-Яу, которые на первый взгляд не имеют ничего общего. Более того, Платоновы тела имеют свои собственные дуальности: куб и октаэдр, например, образуют дуальную пару, потому что каждый из них может быть повернут двадцатью четырьмя разными способами и после поворота совпасть сам с собой. Икосаэдр и додекаэдр принадлежат к более крупной группе симметрии, будучи инвариантными относительно шестидесяти различных вариантов поворота. Тетраэдр, между тем, дуален сам себе. Любопытно, что когда мой коллега, математик Питер Кронхаймер, чей кабинет находится через несколько дверей по коридору от моего, пытался классифицировать группу из четырехмерных многообразий Калаби-Яу по симметрии, он обнаружил, что они следуют той же схеме классификации, что и Платоновы тела. Я никоим образом не пытаюсь утверждать, что Платон, распространявший свои идеи на заре становления математики, всегда был прав. Напротив, его представления о происхождении элементов являются неверными. Точно так же попытки астронома Иоганна Кеплера объяснить орбиты планет Солнечной системы с помощью вложенных Платоновых тел, лежащих внутри концентрических сфер, также были обречены на провал. Детали в этих сценариях не складываются, и они даже не приближаются к истине. Но с точки зрения общей картины Платон во многом был на верном пути, определив некоторые из ключевых элементов головоломки, такие как симметрия, дуальность и общий принцип геометризации, которые, как мы сейчас полагаем, должны быть включены в любые реальные попытки объяснить картину мира. В связи с этим мне кажется правдоподобным, что Платон отдал должное геометрии в надписи перед входом в его знаменитую Академию. Подобно тому как я разделяю его уважение к дисциплине, которую я выбрал много лет спустя, если бы я устанавливал вывеску над дверью моего явно не пользующегося известностью в Гарварде офиса, я бы изменил формулировку следующим образом: Да не останется здесь не знающий геометрии . Те же слова, я надеюсь, можно адресовать и читателям, сейчас «оставляющим» страницы этого небольшого тома и, надеюсь, смотрящим теперь на мир другими глазами. — 275 —
|