Невидимое движение в дополнительных измерениях сообщит частице импульс и кинетическую энергию, поэтому ожидается, что частицы Калуцы-Клейна будут тяжелее, чем их медленные четырехмерные коллеги. В качестве примера можно привести гравитоны Калуцы-Клейна. Они будут выглядеть как обычные гравитоны, будучи частицами-переносчиками гравитационного взаимодействия, только они будут тяжелее за счет дополнительного импульса. Один из способов выделить такие гравитоны среди огромного моря других частиц, рождаемых коллайдером, — обратить внимание не только на массу частицы, но и на ее спин. Фермионы, такие как электроны, имеют определенный угловой момент, который мы квалифицируем как спин-1/2. Бозоны, такие как фотоны и глюоны, имеют чуть больший угловой момент, квалифицируемый как спин-1. Любые частицы, у которых на коллайдере будет обнаружен спин-2, вероятно, являются гравитонами Калуцы-Клейна. Такое открытие будет иметь большое значение, так как физики не только поймают первый проблеск долгожданной частицы, но и получат убедительное доказательство существования самих дополнительных измерений. Обнаружение существования, по крайней мере, одного дополнительного измерения является потрясающим открытием само по себе, но Шую и его коллегам хотелось пойти дальше и получить подсказки, указывающие на геометрию этого дополнительного пространства. В 2008 году в статье, написанной совместно с Ундервудом, Девином Уолкером из Калифорнийского университета Беркли и Катериной Журек из Висконсинского университета, Шуй и его команда обнаружили, что небольшое изменение в форме дополнительных измерений вызывает огромные — от 50% до 100% — изменения, как в массе, так и в характере взаимодействия гравитонов Калуцы-Клейна. «Когда мы чуть-чуть изменили геометрию, числа изменились кардинально», — замечает Андервуд.[245] Хотя анализ, выполненный Шуем с сотрудниками, далек от того, чтобы делать выводы о форме внутреннего пространства или уточнять геометрию Калаби-Яу, он дает некоторую надежду использовать данные экспериментов, чтобы «сократить класс разрешенных форм до небольшого диапазона». «Секрет нашего успеха лежит в кросс-корреляции между разными типами экспериментов в космологии и физике высоких энергий», — говорит Шиу.[246] Масса частиц, регистрируемых на Большом адронном коллайдере, также даст нам намеки на размер дополнительных измерений. Дело в том, что для частиц это проход в многомерную область, и чем меньше эти области, тем тяжелее будут частицы. Вы можете спросить, сколько энергии необходимо для прогулки по проходу. Вероятно, немного. Но что, если проход окажется не коротким, но очень узким? Тогда проход через туннель выльется в борьбу за каждый дюйм пути, сопровождаемый, без сомнения, проклятиями и обещаниями, и конечно, большей затратой энергии. Вот примерно то, что здесь происходит, а говоря техническим языком, все сводится к принципу неопределенности Гейзенберга, который гласит, что импульс частицы обратно пропорционален точности измерения ее местоположения. Иначе говоря, если волна или частица зажаты в очень, очень крошечном пространстве, где ее положение ограничено очень узкими границами, то она будет иметь огромный импульс и соответственно большую массу. И наоборот, если дополнительные измерения огромны, то волна или частица будет иметь больше места для движения и соответственно обладать меньшим импульсом и обнаружить их будет легче. — 241 —
|