Частица на краю Вселенной

Страница: 1 ... 8182838485868788899091 ... 254

W-бозоны, Z-бозоны, тау-лептоны, бозоны Хиггса

Эти совершенно разные частицы объединены в одну группу по одной простой причине: они очень тяжелые и поэтому недолговечные. Все они быстро распадаются на другие частицы, причем настолько быстро, что детекторы их зарегистрировать не могут, и судить о существовании этих частиц приходится, анализируя то, на что они распались. Из этого списка тау-лептоны имеют самое большое время жизни и при благоприятных условиях смогут прожить достаточно долго, чтобы их можно было идентифицировать.

Электроны и фотоны

Эти частицы проще всего и зарегистрировать, и точно измерить их свойства. Они не фрагментируются в струи, в которых трудно разобраться, как кварки и глюоны, зато охотно взаимодействуют с заряженными частицами в материале детектора, создавая электрический ток, который просто измерить. К тому же их просто отличить друг от друга, поскольку электроны (и позитроны – их античастицы) электрически заряжены и, следовательно, подвержены влиянию магнитного поля, в то время как фотоны нейтральны и двигаются беспрепятственно по прямой.

Нейтрино и гравитоны

Эти частицы не чувствуют ни сильного взаимодействия, ни электромагнитного поля. Следовательно, практически нет никакого способа зарегистрировать их в детекторе, и они просто пролетают сквозь него незамеченными. Гравитоны появляются только при гравитационном взаимодействии, а оно столь слабое, что в коллайдере гравитоны не рождаются, и мы выбросим из головы. (В некоторых экзотических теориях утверждается, что гравитация при высоких энергиях велика, то есть что рождение гравитонов в коллайдере возможно. Конечно, такая вероятность принимается во внимание.) Нейтрино, однако, рождаются при слабых взаимодействиях, причем постоянно. Они – единственные частицы Стандартной модели, которые нельзя обнаружить, хотя они вполне способны появиться в столкновениях. Таким образом, выработалось простое правило: все, что не обнаруживается, можно считать нейтрино.

Когда два протона летят навстречу друг другу, они оба движутся вдоль пучковой трубы, поэтому их суммарный импульс в направлении, перпендикулярном к пучку, будет равен нулю. Общий импульс системы сохраняется, поэтому он должен быть равен нулю и после столкновений. Следовательно, мы можем измерить импульсы зарегистрированных частиц, и если их сумма не равна нулю, значит там были нейтрино, двигавшиеся в другую сторону, и их суммарный импульс должен компенсировать импульс зарегистрированных частиц. Этот метод называется методом «недостающего поперечного импульса» или просто «недостающей энергией». Мы, возможно, не знаем, сколько образовалось нейтрино, унесших недостающий импульс, но это часто можно понять, определив, какие еще частицы были произведены. (Например, в результате действия слабых сил создается не только мюон, но и мюонное нейтрино.)

— 86 —
Страница: 1 ... 8182838485868788899091 ... 254