Частица на краю Вселенной

Страница: 1 ... 139140141142143144145146147148149 ... 254

Таким образом, вы начинаете с «нулевой гипотезы», которая является своеобразным способом заявить о том, «какого результата вы ожидаете, если ничего экстраординарного не произойдет». Для монеты нулевая гипотеза состоит в том, что при каждом подкидывании вероятность выпадения орла и решки составляет 50 на 50. Для бозона Хиггса нулевая гипотеза состоит в том, что все результаты получены в процессах, где бозона Хиггса вообще нет. Тогда мы спросим, согласуются ли с нулевой гипотезой фактически полученные результаты – а именно, был ли реальный шанс получить такие же результаты при подкидывании «правильной» монетки, или – в ситуации с распадами частиц – если бы бозона Хиггса там не было.

Представьте себе, что мы будем подбрасывать монетку 100 раз. (По-хорошему, мы должны подбросить ее намного больше раз, но нам лень.) Если монетка совершенно нормальная, мы ожидаем получить 50 выпадений орла и 50 – решки или близкое к этому соотношение. Мы не удивились бы, если бы выпал, скажем, 52 раза орел и 48 – решка, но если бы мы получили 93 раза орла и только 7 раз решку, это было бы крайне подозрительно. Хотелось бы эти свои подозрения выразить в количественном виде или, другими словами, узнать, при каких именно отклонениях от предсказанного соотношения исходов 50 на 50 мы должны были бы сделать вывод о том, что у нас была «неправильная» монетка?

Быстрых и четких ответов на этот вопрос нет. Мы могли подбрасывать монетку миллиард раз, и каждый раз выпадал бы орел, и это, в принципе, возможно – просто нам очень, очень везло. Так же работает и наука. Мы не «доказываем» правильность результатов, как это можно сделать в математике или логике, а просто накапливаем все больше и больше свидетельств их правильности, увеличивая их достоверность. Если полученные данные уже существенно отличаются от тех, которые можно было бы ожидать в случае верности нулевой гипотезы, мы отвергаем ее и двигаемся дальше. Поскольку мы рассматриваем процессы, вероятностные по своей сути, и имеем дело только с конечным числом событий, неудивительно, что мы получаем некоторое отклонение от идеального результата. Типичное отклонение обозначается греческой буквой сигма (ст). Это позволит нам выразить в удобном виде, насколько велико отклонение реально наблюдаемых данных от идеального результата, то есть насколько оно больше, чем сигма. Если разница между наблюдаемым результатом измерения и теоретическим прогнозом в два раза больше типичного ожидаемого разброса, мы говорим, что получен результат «две сигмы».

— 144 —
Страница: 1 ... 139140141142143144145146147148149 ... 254