Но одно предложение по объединению может завершиться объяснением намного большего, чем остальные, и обычно это простейшее предложение. В этот момент, когда отдельное предложение чрезвычайно превосходит остальные с точки зрения генерирования новых прозрений, согласия с экспериментом, объяснительной силы и простоты, это принимается за видимость однозначности. Мы говорим, что предложение попало в круг истины. Чтобы увидеть, как это может произойти, рассмотрим три унификации, предложенные одной персоной, немецким астрономом Иоганном Кеплером (1571–1630). На протяжении жизни Кеплера его навязчивой идеей были планеты. Поскольку он верил, что Земля является планетой, он знал их шесть, от Меркурия до Сатурна. Их движения по небу наблюдались тысячи лет, так что было весьма много данных. Самые точные данные пришли от датского астронома Тихо Браге. Кеплер, в конце концов, пришел работать к Тихо Браге, чтобы овладеть его данными (и после смерти Браге он своровал их, но это другая история). Каждая планетная орбита имеет радиус. Каждая планета также имеет орбитальную скорость. Надо добавить, что скорость не однородна, планеты ускоряются и замедляются, когда они двигаются вокруг Солнца по своим орбитам. Все эти числа кажутся случайными. Кеплер всю свою жизнь добивался принципа, который мог бы объединить движения планет, и, сделав это, объяснить данные по планетарным орбитам. Сначала Кеплер занялся унификацией планет, лежащей на линии античной традиции, по которой космологическая теория должна использовать только простейшие фигуры. Одна из причин, по которой греки верили в круги, двигающиеся по кругам, заключается в том, что круг есть простейшая, а потому самая прекрасная из замкнутых фигур. Кеплер исследовал не менее прекрасные геометрические фигуры, которые могли объяснить размеры орбит планет. И он нашел очень элегантную идею, проиллюстрированную на Рис.1. Рисунок 1. Первая теория Солнечной системы Кеплера, основанная на Платоновых телах.Примем орбиту Земли как данную. Тогда необходимо объяснить пять чисел: пять отношений диаметров орбит других пяти планет к диаметру орбиты Земли. Если они могут быть объяснены, должна существовать некоторая красивая геометрическая конструкция, которая дает в точности эти пять чисел. Не больше и не меньше. Так что же, проблема в геометрии, для которой имеются точно пять ответов? Да. Куб является совершенным видом тела, для которого каждая сторона такая же, как и любая другая, и каждое ребро имеет ту же длину, что и все остальные ребра. Такие тела называются Платоновыми телами. Сколько их? Точно пять: кроме куба, еще тетраэдр, октаэдр, додекаэдр и икосаэдр. — 37 —
|