В расцвете 1985 одним из самых увлеченных сторонников новой революционной теории был Дэниэл Фридэн, тогда работавший в Университете института Ферми в Чикаго. Вот что он сказал в недавней статье: Теория струн потерпела неудачу как теория физики вследствие существования многообразия возможных фоновых пространств-времен. ... Долго продолжающийся кризис теории струн заключается в ее полной неспособности объяснить или предсказать что-либо из физики больших масштабов. Теория струн не может сказать ничего определенного о физике больших расстояний. Теория струн не способна определить размерность, геометрию, спектр частиц и константы связи макроскопического пространства-времени. Теория струн не может дать никакого определенного объяснения существующему знанию о реальном мире и не может сделать никаких определенных предсказаний. Достоверность теории струн не может быть оценена, еще меньше установлена. Теория струн не имеет веры как кандидат на теорию физики. Однако, многие струнные теоретики все еще на службе. Но как это так, что перед лицом проблем, которые мы обсуждали, множество ярких людей продолжают работать над теорией струн? Одна из причин в том, что струнные теоретики восхищены тем, что теория красива или "элегантна". Это что-то из эстетических обоснований, с которыми люди могут быть не согласны, так что я не уверен в том, как это должно быть оценено. В любом случае это не играет роли в объективном определении достижений теории. Как мы говорили в Части I, множество прекрасных теорий оказались не имеющими ничего общего с природой. Некоторые молодые струнные теоретики утверждают, что даже если теория струн не добьется успеха в конечной унификации, она имеет побочные результаты, которые способствуют нашему пониманию других теорий. Они особенно ссылаются на предположение Малдасены, обсужденное в главе 9, которое обеспечивает способ изучения определенных калибровочных теорий из расчетов, которые легче провести в соответствующей теории гравитации. Это определенно хорошо работает для теорий с суперсимметрией, но, если это должно быть значимо для стандартной модели, это должно хорошо работать и для теорий, которые не имеют суперсимметрии. В этом случае имеются другие техники, и вопрос в том, насколько хорошо предположение Малдасены согласуется с ними. Судьи все еще консультируются. Хорошим проверочным случаем является упрощенная версия калибровочной теории, в которой имеются только два пространственных измерения. Недавно эта задача была решена с использованием техники, которая не имела никакого отношения к суперсимметрии или теории струн. Это также можно изучить через третий подход – грубый расчет на компьютере. Компьютерные вычисления считаются надежными, поэтому они могут служить тестовым испытанием, с которым сравниваются предсказания других подходов. Такое сравнение показывает, что предположение Малдасены не работает так же хорошо, как другие техники.( Совсем недавно эти новые техники были также успешно применены к КХД в случае реального мира с тремя пространственными измерениями ) — 171 —
|