Два края пропасти между понятиями квантовой частицы и волнового поля оказались двумя коренными свойствами физической реальности. И надо было не строить мост через пропасть, а научиться летать мыслью над пропастью так, чтобы видеть оба ее края и уметь приземляться по обеим сторонам. Такой летательный аппарат дала квантовая механика, созданная во второй половине 1920-х годов трудами прежде всего физиков молодого поколения и сразу показавшая свою плодотворность. Теорию эту основоположники восприняли по-разному. Планк, которому уже было под семьдесят, — с грустью. Вместо того чтобы прояснить его же парадоксальные идеи, квантовая механика добавила новые. Тихо страдая, он сформулировал грустный закон истории: Новые идеи входят в науку не потому, что их противники признают свою неправоту; просто противники эти постепенно вымирают, а подрастающее поколение усваивает новые понятия с самого начала. Представители «вымирающего поколения», такие как Планк, молча переживают внутреннюю драму, мучаясь тем, что их научные идеалы обнаружили свою ограниченность. Другие, критически анализируя новую физику, проясняют ее. Так вел себя Эйнштейн. Он понимал, что квантовая механика успешно работает, но считал ее лишь промежуточным этапом, отказываясь признать ее полной теорией. При этом главное неприятие вызывала идея, которую он сам, по существу, впервые ввел в физику, — фундаментальная роль вероятности. Новая вероятностьНовая вероятность принципиально отличалась от той, которую Максвелл положил в основу статистической физики, а Эйнштейн применил в задаче броуновского движения. Там речь шла об учете огромного числа факторов — например, толчков множества молекул. В подобных задачах нет практической возможности, да и надобности, следить за деталями движений всех молекул. Однако теоретически можно было думать, что каждая молекула движется неким определенным образом под воздействием толчков других молекул и соударений о стенки сосуда. Начиная с открытия радиоактивности, так думать уже не получалось. Радиоактивное ядро распадалось с некоторой вполне определенной вероятностью, казалось, независимо от окружения, и это не было результатом множества каких-то случайностей. Устройство ядра, впрочем, еще долго оставалось непроницаемым, но уже поведение атомных электронов намекало на какую-то новую вероятность — вероятность перескока электрона с одной орбиты на другую. Ведь электрон мог перескочить с высокой орбиты на любую из нижних. Каждому перескоку соответствовала своя частота излучения, то есть положение спектральной линии, и это положение давалось моделью Бора. Но спектральная линия характеризуется еще и яркостью, которая как-то соответствует «охотности» данного перескока. Именно яркостью Эйнштейн занимался в 1916 году, когда ввел два типа излучения — спонтанное и вынужденное. Спонтанный перескок происходит сам собой, независимо ни от чего, и определяется некой величиной вероятности. А вынужденный перескок происходит под воздействием излучения той же частоты и пропорционален его интенсивности. Эйнштейн получил связь между интенсивностями этих излучений, начав фактически путь к теории лазеров, но для нас сейчас — и для создания квантовой теории в 1920-е годы — особенно важно само понятие спонтанного излучения, характеризуемого некой «первичной», фундаментальной вероятностью, а не результатом множества каких-то нано-микро-случайностей. — 87 —
|