Так или иначе, к 1930-м годам жизнь Эйнштейна все более разъединялась с жизнью фундаментальной физики. И его не занимали новые проблемы, предвещавшие новый кризис и новую революцию в физике. В ожидании ch -революцииЗавершенная в 1927 году квантовая механика, или h -теория, дала надежную теоретическую основу для физики атомных явлений — поведения частиц, движущихся вне ядра. Другое дело — само ядро. Тогдашняя физика знала, что мироздание построено из трех видов частиц: протоны, электроны и фотоны. Протон — ядро водорода, самое легкое из ядер. Считалось, что все другие ядра, по весу примерно кратные протону, из соответствующего числа протонов и состоят. А то, что положительный заряд ядер меньше, чем это число, объясняли наличием в ядрах электронов — внутриядерных электронов, отрицательный заряд которых компенсирует «лишний» положительный заряд протонов. Так, например, ядро второго по номеру элемента — гелия — считали состоящим из четырех протонов и двух электронов. К тому времени уже давно расшифровали все три типа радиоактивности — альфа-, бета— и гамма-лучи. Оказалось, что это не столько лучи, сколько частицы: альфа — ядра гелия, бета — электроны, гамма — фотоны очень высокой энергии. Все эти лучи-частицы вылетают из ядер. Но почему из некоторых ядер вылетают альфа-частицы, из других — бета или гамма, а из третьих ничего никогда не вылетает? То был лишь один из безответных вопросов, но только что открытые законы квантовой механики, как считалось, неприменимы к физике ядра. Основания так думать усматривали и в экспериментах, и в теории. В 1927 году в точных опытах установили, что электроны, вылетающие при бета-распаде ядер, имеют разные энергии, а разность энергий ядра до и после распада больше средней энергии бета-электронов. При этом не было гамма-излучения, которое могло бы спасти баланс энергии. Это дало Бору основание предположить, что в ядерной физике баланс действительно нарушается — нарушается закон сохранения энергии. Эту страшную гипотезу Бор высказал, будучи уверен, что речь шла о новой, неизученной области физики, для которой требуется ch -теория. И опирался он при этом на h -теорию квантовой механики, в основе которой знаменитое соотношение неопределенностей координаты частицы x и ее импульса p = mV : ?x .?p > h. Применяя это соотношение к внутриядерным электронам, для которых ?x не больше размеров ядра, получали, что диапазон скоростей этих электронов — 134 —
|