Уподобим теперь Вселенную резиновому шарику, помня суть эйнштейновской теории гравитации — связь кривизны пространства-времени и состояния вещества. Эйнштейн, можно сказать, обнаружил, как радиус шарика связан с плотностью и упругостью резины. Начал он с шарика, радиус которого постоянен. Упрощение задачи — один из главных инструментов теоретика. В потемках незнания иногда ищут ключ под фонарным столбом лишь потому, что в других местах искать невозможно. Как ни странно, подобные поиски бывают успешны. Решать сложные уравнения для произвольного случая не под силу даже автору уравнений. Эйнштейн начал с простейшего случая — с максимально однородной геометрии, хотя наблюдения астрономов в 1917 году не говорили об однородности вещества во Вселенной. Зато второе его предположение — о неподвижности шарика — выглядело столь же очевидным, как и постоянство звездного неба. Только на фоне неподвижных звезд астрономам удалось изучить движение планет, а физикам найти управляющие этим движением законы. И наконец, вечность Вселенной привычно от имени науки противостояла религиозной идее о сотворении мира. На эту аксиому и поднял руку Фридман. Вернемся к резиновому, точнее к Риманову, шарику Вселенной, который Эйнштейн взял в руки в 1917 году. Сделав свои упрощающие предположения, Эйнштейн с огорчением обнаружил, что никакого шарика в его руках на самом-то деле нет, есть только бесплотные аксиомы. Он обнаружил, что уравнения гравитации, выстраданные им два года назад, не имеют ожидаемого решения! Помочь ему мог любой ребенок, знающий, что настоящая жизнь резинового шарика начинается, если его надуть. Но Эйнштейн — недаром великий физик — и сам додумался до этого. Добавленная им в уравнения космологическая постоянная стала тем воздухом, упругость которого уравновесила упругость вселенского шарика. Познакомившись с космологией Эйнштейна, Фридман оценил грандиозность поставленной физической задачи, однако математическое ее решение вызвало у него сомнения. Конечно, маятник может пребывать в покое, но это лишь частный случай его общего колебательного движения. Или на языке математики: у дифференциального уравнения, каким было и уравнение гравитации Эйнштейна, обычно бывает целый класс решений, зависящих от начальных условий. В своей статье Фридман и показал, как меняется сферическое пространство-время в соответствии с его «упругостью», определяемой уравнением Эйнштейна. В одном из возможных решений радиус Вселенной возрастал, начиная с нулевого значения, до некоторой максимальной величины, а затем опять уменьшался до нуля. А что такое сфера нулевого радиуса? Ничто! И Фридман написал: — 113 —
|