Открытие неевклидовой геометрии Лобачевским, развитое Гауссом, Риманом и другими, стало одной из главных научных сенсаций девятнадцатого века. Не зря в романе «Братья Карамазовы», написанном в 1880 году, упоминаются «геометры и философы, которые сомневаются в том, чтобы вся вселенная или, еще обширнее, все бытие было создано лишь по Евклидовой геометрии, осмеливаются даже мечтать, что две параллельные линии, которые по Евклиду ни за что не могут сойтись на земле, может быть, и сошлись бы где-нибудь в бесконечности». Иван Карамазов этого не понимал «своим земным евклидовским умом», но в начале двадцатого века неевклидову геометрию уже легко было объяснить школьнику на примере геометрии сферы, назвав прямой, проходящей через две точки сферы, кратчайшую линию, даваемую натянутой нитью. Представив себя геометром, обитающим на сфере (и не видящим ничего за ее пределами), можно убедиться, что в этом двумерном сферическом мире любые две прямые пересекаются, а отношение длины окружности к радиусу меньше 2?. Понятно, что если радиус сферы очень велик, то саму сферичность заметить трудно, как и было во времена, когда Землю считали плоской. В начале двадцатого века неевклидову геометрию примеряли ко Вселенной не только геометры и философы, но и астрономы, пытаясь оценить радиус трехмерной вселенской сферы на основе астрономических наблюдений. При этом, однако, предполагалось, что свойства геометрии одинаковы во всех точках пространства. Эйнштейн же думал о геометрии пространства-времени, обобщавшей 3+1-мерную геометрию Минковского так, что геометрические свойства меняются от точки к точке в зависимости от распределения и движения вещества. Математики к тому времени уже умели обращаться с такой переменной, или Римановой, геометрией, но физикам до Эйнштейна эта новая математика была совершенно ни к чему. Эйнштейн, разумеется, прежде всего думал о новой физике, необходимой для описания гравитации, а новый математический язык требовался для выражения его физических идей. Эти идеи, надо сказать, не нашли сочувствия у коллег — ни принцип эквивалентности, понятный школьнику, ни геометричность гравитации, не понятая никем. Хоть сам Эйнштейн был уже знаменитым автором теории относительности и гипотезы фотонов. Пока он пытался воплотить свои соображения, коллеги публиковали свои теории гравитации по образу электродинамики, опираясь на его же теорию относительности. Коллеги, можно сказать, защищали теорию относительности от ее автора, посягающего на ее стройность и симметрию. Их теориям не удавалось объяснить аномалию Меркурия, но они думали, что не все варианты исследованы. — 102 —
|