В статье «О трении смазочного слоя между шипом и подшипником» (1906), написанной Жуковским совместно с Чаплыгиным, дано точное решение задачи о движении смазочного слоя. Эта классическая работа Жуковского и Чаплыгина имеет большое практическое значение; она вызвала ряд теоретических и экспериментальных исследований. В рассматриваемый период большой вклад в развитие гидродинамики внес В.А. Стеклов. Скажем несколько слов о жизненном пути этого выдающегося ученого. Владимир Андреевич Стеклов (1864—1926) родился в Нижнем Новгороде. В 1883 г. он поступил на физико-математический факультет Харьковского университета. Два года спустя научным руководителем его здесь стал Ляпунов, оказавший сильное влияние на интересы молодого Стеклова. Под влиянием Ляпунова Стеклов занялся вопросами гидромеханики и математической физики, а также связанными с ними проблемами математики. В 1894 г. Стеклов защитил диссертацию «О движении твердого тела в жидкости» па степень магистра прикладной математики, а в 1902 г. — диссертацию «Общие методы решения задач математической физики» на степень доктора прикладной математики. С 1906 г. он возглавил кафедру математики в Петербургском университете, где воспитал целую плеяду последователей. В 1910 г. он был избран академиком (членом-корреспондентом Академии наук он состоял с 1903 г.). После Октябрьской революции Стеклов в числе других представителей русской интеллигенции стал на сторону Советской власти. В качестве вице-президента Академии наук он вел большую и чрезвычайно плодотворную научно-организационную работу. Приступая к исследованию того или иного вопроса, Стеклов обычно исходил из общих уравнений и намечал общий метод решения. Если же на пути встречались непреодолимые трудности, он или указывал способ приближенного решения, или ставил точно определенные, ограничивающие условия и затем подробно исследовал частные случаи. Так он поступил в 1890—1891 гг. в ряде статей, а также в магистерской диссертации «О движении твердого тела в жидкости». В диссертационной работе он вывел уравнения движения тела в жидкости при весьма общих предположениях относительно твердого тела: 1) тело ограничено поверхностью произвольного порядка связности; 2) внутри тела имеется конечное число наполненных жидкостью полостей; 3) силы, приложенные к телу, могут быть какими угодно, а для сил, приложенных к жидкости, существует силовая функция; 4) жидкость, предполагающаяся идеальной и несжимаемой, вне тела безгранична и на бесконечности имеет скорость, равную нулю; 5) скорости точек жидкости в полостях тела и вне его имеют потенциал. — 228 —
|