Механика от античности до наших дней

Страница: 1 ... 204205206207208209210211212213214 ... 306

Винтовое исчисление А.П. Котельникова — обобщение векторного исчисления; оно описывает силовые винты статики и винтовые перемещения кинематики. Заметим, что в конце XIX в. векторные методы в механике все еще оставались новинкой.

В 1899 г. А.П. Котельников защитил диссертацию «Проективная теория векторов», за которую получил сразу две ученые степени — доктора чистой математики и доктора прикладной математики. Эта работа имеет большое значение в развитии неевклидовой механики. Котельников дал определение и метод сложения векторов, пригодных для всех неевклидовых пространств, определил эквивалентность систем векторов, показал, что всякая система векторов эквивалентна «канонической системе», состоящей из двух векторов, направленных по двум взаимно полярным прямым, и, нашел необходимое и достаточное условие эквивалентности двух систем векторов. Последнее условие состоит в равенстве определяемых системами векторов величин особого рода «винтов» («моторов», «динам»), тесно связанных с комплексными числами различного вида. Котельников глубоко разработал алгебру винтов, аналогичную векторной алгебре, и ее применения к геометрии, в особенности линейчатой геометрии, и механике (теория винтовых интегралов). Уже в советское время А.П. Котельников дал изящное изложение своих идей в статье «Теория векторов и комплексные числа» (опубликована посмертно в 1950 г.). Из работ А.П. Котельникова помимо диссертаций особо следует отметить статью «Принцип относительности и геометрия Лобачевского», посвященную связям между физикой и геометрией, и «Теория векторов и комплексные числа»221, в которой снова рассматриваются обобщения векторного исчисления и вопросы неевклидовой механики.

В 1927 г. казанский геометр П.А. Широков (1895— 1944), находящийся под сильным влиянием А.П. Котельникова, дал весьма наглядную геометрическую конструкцию действий над векторами в неевклидовых пространствах. Эта конструкция была предложена им в работе «Преобразование винтовых интегралов в пространствах постоянной кривизны». Широков был автором еще нескольких работ по неевклидовой механике. В частности, вопросам связи между физикой и неевклидовой геометрией в несколько другом аспекте, чем работы Котельникова по неевклидовой механике, посвящена работа Широкова «Принцип относительности и геометрия Лобачевского». В этой работе получили развитие идеи известной работы Германа Минковского (1864—1909) «Время и пространство»222, в которой была дана геометрическая интерпретация пространства—времени специальной теории относительности Эйнштейна.

— 209 —
Страница: 1 ... 204205206207208209210211212213214 ... 306