Под моментом сил Остроградский подразумевал работу сил. Итак, здесь ученый развивает мысль о распространении метода возможных перемещений на системы с освобождающими связями, поставив условием равновесия требование, чтобы полный момент сил был равен нулю или меньше нуля. Этот же метод был применен Остроградским для вывода дифференциальных уравнений движения, причем эти уравнения были выведены Остроградским и для случая голономных освобождающих связей, и для дифференциальных (неголономных) связей линейного вида. В работах «О мгновенных перемещениях систем, подчиненных переменным условиям» (1838) и «О принципе виртуальных скоростей и о силе инерции» (1841 г., опубликована в 1842 г.) Остроградский дал строгое доказательство формулы, выражающей принцип возможных перемещений, для случая нестационарных связей. Во второй работе указаны некоторые неточности, допущенные Пуассоном в курсе механики. Лагранж в «Аналитической механике» рассмотрел многие вопросы этой науки, но одна интересная задача теории удара была оставлена им в стороне; частный случай ее был изучен вскоре Л. Карно. В мемуаре «К общей теории удара» (1854 г., опубликован в 1857 г.) Остроградский исследовал удар систем в предположении, что возникающие в момент удара связи сохраняются и после него. Он распространил здесь принцип возможных перемещений на явление неупругого удара и получил основную формулу аналитической теории удара, из которой легко получается ряд теорем, решение упомянутой задачи, и в частности обобщение одной теоремы Карно. М.В. Остроградский читал лекции по аналитической механике. Курс, читанный им в Институте инженеров путей сообщения, был литографирован в 1834 г. По словам коллеги Остроградского, известного математика В.Я. Буняковского, выход этого сочинения ожидался с нетерпением. Позднее, в 1852 г., вышли в литографическом издании лекции по аналитической механике, читанные Остроградским в Главном педагогическом институте. Эти лекции Остроградского, составленные на основе классических работ Лагранжа, а также новейших работ Фурье (1768—1830), С. Пуассона (1781—1840), Гамильтона и самого лектора, имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простые и общие принципы, позволяющие доказывать ее теоремы изящно, кратко и просто. Выдающийся советский ученый академик Алексей Николаевич Крылов в своем предисловии к новому изданию этих лекций говорил о богатстве их содержания и своеобразии изложения. В докладе Президиуму АН СССР Крылов писал: «Эта книга не только будет служить некоторым памятником знаменитому ученому, но принесет большую пользу как пособие для вузов и втузов». — 163 —
|