Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин: кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи: их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирование) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем «Трактате об электричестве и магнетизме», касаясь значения «Аналитической механики» Лагранжа: «Так как благодаря созданию математической теории динамики развитие идей и методов чистой математики сделало возможным выявление многих истин, которые нельзя было бы открыть, не обучившись математике, то, если мы хотим создать динамическую теорию других наук, мы должны воспринять и эти динамические истины, и математические методы. Формулируя идеи и термины любой науки, имеющей дело, как паука об электричестве, с силами и с их действиями, мы должны постоянно иметь в виду идеи, являющиеся достоянием основной пауки — динамики, чтобы мы могли с самого начала развития науки избежать противоречий с тем, что уже установлено, а также для того, чтобы с уточнением наших взглядов принятый нами язык нам помогал, а не мешал»177. Принципом наименьшего действия Лагранж много занимался в первые годы своей научной деятельности в связи с работами по вариационному исчислению. При систематическом изложении механики этот принцип отходит у Лагранжа на второй план. Все же существенно было то, что Лагранж формулировал этот принцип с полной определенностью как чисто механическую теорему, справедливую при соблюдении определенных условий. Эта формулировка такова: при движении любой системы тел, находящихся под действием взаимных сил притяжения или сил, направленных к неподвижным центрам и пропорциональных каким-либо функциям расстояний, кривые, описываемые различными телами, а равно их скорости необходимо таковы, что сумма произведений отдельных масс на интеграл скорости, умноженной на элемент кривой, является максимумом или минимумом — при условии, что первые и последние точки каждой кривой рассматриваются как заданные. — 151 —
|