Кванты и музы

Страница: 1 ... 1112131415161718192021 ... 266

Конечно, такая ситуация вызывала известное неудовольствие. Но что было делать, с этим приходилось мириться. Учёные, возможно, утешали себя примером Ньютона: тот тоже мирился с незнанием природы сил тяготения, удовлетворившись тем, что установил результат действия этих сил и сумел найти им количественную оценку.

А кроме того, нельзя сказать, что вероятностные законы оказались такой уж новостью. Они явились неожиданностью лишь в отношении атомов и элементарных частиц. В мире больших тел, в привычном нам мире не только учёные, но каждый из нас не раз сталкивался с законами случая.

Осень. Облетают листья. Совершенно очевидно, что почти все они упадут на землю. Но ни одна теория не предскажет, куда упадёт каждый лист. Можно лишь с определённой вероятностью утверждать, что листья будут располагаться в основном вокруг дерева. Большая их масса — под кроной. Часть отлетит в сторону. Какое-то количество будет унесено ветром.

Тут действует закон случая — «закон опадающих листьев»…

Эйнштейн смело использовал этот закон в применении к микромиру. Он провёл аналогию между вероятностью радиоактивного распада и вероятностью рождения фотонов при перескоке электронов внутри атома с орбиты на орбиту.

По мнению Эйнштейна, акты излучения и поглощения фотонов тоже подчиняются «закону опадающих листьев» — вероятностным законам. Эти законы относятся к поведению совокупности тел: листьев, атомов. Для большого скопления тел эти законы дают точную формулу поведения. Но о каждом из них в отдельности умалчивают. Для отдельного атома, как и для отдельного осеннего листа, за коны природы разрешают определить лишь вероятность того или иного события. Излучит атом фотон или поглотит — дело случая. Можно только подсчитать вероятность этого для данного отрезка времени.

Наверно, нечто подобное происходит при наступлении атакующей армии: можно определить, сколько снарядов и пуль выпустила в неприятеля эта армия, но невозможно установить, какой солдат или орудие и когда выпустило ту или иную пулю.

Вывод: нет и не может быть жёсткой связи между моментом рождения квантов внутри «атома Бора» при перескоке электронов с одной орбиты на другую и формулой Планка, рисующей поведение этих квантов — потока излучения из вещества — уже вне атома.

Это обескураживало физиков. Жизнь вносила в строгую, привычную к точности физику неопределённость, граничащую с произволом. Пока учёные видели лишь то, что вновь открытые ими квантовые законы запрещают, не видя ещё того, что они разрешают.

Об этом догадался опять-таки Эйнштейн. В его работе, опубликованной в 1917 году, был один нюанс, роль которого выяснилась много позже. Эйнштейн заподозрил возможность управлять излучением атомов. Он указал на то, что атом может излучать не только под влиянием непознанных ещё внутренних причин, но и в результате воздействия внешнего электромагнитного поля. Это был намёк на сенсационные возможности для техники будущего.

— 16 —
Страница: 1 ... 1112131415161718192021 ... 266