Например, в 70-х и 80-х гг. сразу несколько теоретиков предложили так называемые теории Великого объединения (ТВО) - модели, в рамках которых КХД и электрослабое взаимодействие описываются с единых позиций. Они, по сути, построены на идее о том, что при достаточно высоких энергиях (скажем, в ранней Вселенной) все взаимодействия по интенсивности мало отличались друг от друга. По мере охлаждения вещества была достигнута точка ветвления: в первый фазовый переход разделились сильное и электрослабое взаимодействия, а на второй стадии - электрослабое распалось на слабое и электромагнетизм. Другими словами, по мере того как изменялась фундаментальная структура вакуума, первоначально идеально симметричная конфигурация постепенно искажалась. Примерно в тот же период появились и гораздо более смелые теории объединения. Среди них - гипотеза суперсимметрии, трактующая фермионы и бозоны в рамках одной схемы. У каждого фермиона, согласно этой модели, есть бозонный двойник, так называемый суперпартнер. Аналогично у любого бозона есть фермионный собрат. В первичном вселенском бульоне частицы и их суперпартнеры выступали на равных, но стоило температуре упасть, как суперсимметрия спонтанно нарушилась: суперпартнеры обзавелись такой большой массой, что впрямую мы их до сих пор не наблюдаем. Гипотетические суперпартнеры получили забавные имена в лучших традициях физики элементарных частиц: бозонных двойников электрона и кварка окрестили соответственно «сэлектроном» и «скварком». Фермионного родственника фотона назвали «фотино», глюона - «глюино», а суперпартнеры W- и Z-бозонов удостоились и вовсе непривычных для слуха имен: «вино» и «эйно». Теоретики надеялись, что по крайней мере самые легкие суперпартнеры можно будет заметить среди осколков столкновений. В общем, недостатка в свежих идеях не было. Поэтому хотя к концу 80-х гг. многие из главных следствий Стандартной модели были проверены на опыте, вряд ли кого-то в физике высоких энергий это заставило воздержаться от постановки новых экспериментов. Правда, чтобы вырастить плод посочнее, требовалось изрядно удобрить просторы ускорителя энергией. Суперсинхротронный коллайдер быстро вышел на свои предельные 450 ГэВ, а столь желанные россыпи топ-кварков или «хиггса», не говоря о совсем уж экзотических частицах, так и не появлялись. Еще один церновский проект - Большой электрон-позитронный коллайдер (БЭП) - поражал если не энергией, то размером. Построив это кольцо, почти 27 км в окружности и уходящее в землю примерно на 100 м, ЦЕРН расширил свои владения далеко за пределы женевского пригорода и вплыл в зеленеющие пейзажи на границе Швейцарии и Франции. Зачем понадобился ускоритель столь больших размеров? Одна из причин - стремление понизить интенсивность излучения, идущего от вращающихся в кольце электронов и позитронов. Чем больше радиус, тем меньше потери на излучение. — 99 —
|