Квантовая электродинамика излечила некоторые математические недуги, ставшие настоящей напастью для квантовых теорий электронов и других заряженных частиц. До этого теоретики, пытаясь применить квантовую концепцию к электронам, то и дело наталкивались в вычислениях на не имеющие смысла «бесконечности». Фейнман показал, что если применить особую процедуру (провести так называемую перенормировку), вклады от части диаграмм взаимно уничтожаются, и получается конечный ответ. Вдохновленные успехом КЭД, в 50-х гг. многие теоретики решили применить аналогичные методы к слабому, сильному и гравитационному взаимодействиям. Но это теоретическое троеборье оказалось не таким легким, как виделось на первый взгляд. Каждый этап эстафеты таил в себе свои препятствия. На тот момент в теорию бета-распада Ферми, которая в новой версии стала называться универсальным взаимодействием Ферми, были включены мюоны. Одно из главных предсказаний этой теории получило свое подтверждение в середине десятилетия. Фредерик Рейнс и Клайд Коуэн из Лос-Аламосской национальной лаборатории поместили возле атомного реактора огромный контейнер с жидкостью и впервые впрямую зарегистрировали нейтрино. Эксперимент был нацелен на то, чтобы поймать редкие случаи взаимодействия реакторных нейтрино с протонами жидкости. Последние при этом превращаются в нейтроны и позитроны (антиэлектроны) - происходит так называемый обратный бета-распад. Когда частица встречает свою античастицу, они аннигилируют (исчезают), излучая свою энергию в фотонах. К испусканию фотонов приводит и поглощение жидкостью нейтронов. Поэтому Рейнс и Коуэн догадались, что по паре одновременных вспышек (во второй, светочувствительной жидкости), вызываемых этими двумя потоками фотонов, можно судить о присутствии нейтрино. Как ни редки такие события, экспериментаторы их засекли. Последующие эксперименты с гораздо большими объемами жидкости, проведенные Рейнсом и Коуэном, а также другими группами, подтвердили этот революционный результат. Когда последний ингредиент теории Ферми - предшественницы теории слабого взаимодействия - получил свое экспериментальное подтверждение, физики уже начали осознавать ее очевидную неполноту. Особенно явно она выступала при сравнении с потрясающими результатами КЭД. В КЭД в изобилии присутствуют всевозможные естественные симметрии. На диаграммах Фейнмана, где представлены электродинамические процессы, одна из них просто бросается в глаза. Поменяем направление временной оси, заставив течь время в противоположном направлении, - рисунок от этого не изменится. Следовательно, процессы, идущие вперед и назад по времени, не отличаются. Эта симметрия называется инвариантностью относительно обращения времени. — 80 —
|