Коллайдер

Страница: 1 ... 4445464748495051525354 ... 172

Вернувшись в Копенгаген летом того же года, Бор продолжил размышлять о структуре атома. Его интересовал вопрос, почему атомы самопроизвольно не схлопываются. Что-то должно удерживать отрицательные электроны, чтобы те не врезались в положительно заряженное ядро, как метеорит в Землю. В ньютоновской физике есть особая сохраняющаяся величина, момент импульса (момент количества движения). Проще говоря, при вращении тела и количество оборотов, и направление оси стремятся остаться неизменными. А именно произведение массы, скорости и радиуса орбиты часто представляет собой постоянную величину. Не зря фигурист начинает крутиться быстрее, когда прижимает руки к телу. Бор потребовал, чтобы момент импульса электрона принимал значения, кратные постоянной Планка, деленной на два «пи» (? = 3,1415). Тогда частица сможет занимать орбиты только с определенной энергией. То есть электроны могут располагаться только на определенных расстояниях от атомного ядра, или, по-другому, занимать дискретные уровни - квантовые состояния.

Догадка Бора тут же позволила сильно продвинуться в вопросе, почему наборы спектральных линий у атомов именно такие, а не другие. В боровской модели атома электроны, если они находятся в каком-то конкретном квантовом состоянии, энергию не получают и не отдают - словно они, как планета, летают по абсолютно устойчивой, идеальной орбите. По задумке Бора, электроны - это, грубо говоря, нечто вроде маленьких Меркуриев и Венер, обращающихся вокруг солнца-ядра. Но вместо силы тяготения их к центру тянет электростатическая сила, действующая со стороны положительно заряженного ядра. На этом, однако, аналогия с Солнечной системой заканчивается, и теория Бора далее приобретает совершенно другой оборот. В отличие от планет, электроны иногда перепрыгивают из одного квантового состояния в другое, к ядру или, наоборот, от ядра. Прыжки непредсказуемы и происходят мгновенно, а электрон получает или теряет энергию в зависимости от того, на какой - более высокий или более низкий - уровень он прыгнул. Как и в фотоэффекте, частоту получающегося излучения можно вычислить, поделив переданную энергию на постоянную Планка. Сами порции энергии позже были названы фотонами, или световыми частицами. Итак, характерные цветовые линии в спектрах излучения водорода и других элементов объясняются тем, что электрон, сбрасывая световой балласт, совершает своего рода погружения. Чем глубже он погружается, тем выше частота. Модель Бора ждал триумф. Ее предсказания на удивление точно совпали с известными формулами, дающими расстояние между спектральными линиями водорода.

— 49 —
Страница: 1 ... 4445464748495051525354 ... 172